
AD-ABG7 310 GEORGIA INST OF TECH ATLANTA SCHOOL OF INFORMATION A-ETC F/G 9/2
TESTING COBOL PROGRAMS BY MUTATION. VOLUME 1. INTRODUCTION TO T-ETCfU)
FEB80 J N HANKS N00014-79-C-0231

UNCLASSIFIED N

'" IhghhIhhlgIl70inlllluunnulu
IIIIIIIunnuIu
-EEEEEIIIEII
-EEIIIEEEEII

111 1 4.0 12.8 .5

-l ll 1 2 .2

MICROCOPY RESOLUTION TEST CHART

LEF

SUS !QMMT rS SMT QUALM? MMMAR5N

2__ ODY inT1-IR2 TO DW(i-T1C9
SIUIWICANT 9"IM~ ON FAS'3 ME=3*3

Tkadocument b~a MRii ~I
for public rel-ormo entd W~le; 04~

dlistribution is unlite4-

School of

SInformation and Com-puter Scienc

<)GEORGI-A INSTITUTE

1 L~OF T~EHNLOGJ~Y

80 61901

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

GIT-I I)S

This research vas supported in part by The US Army Institute for
"Research in Hanageme Information and Computer Science, ARO Grant

Re iG29-78-G-0121 and The Office of Naval Research, Grant No.

l

TESTING COBOL PROGRAMS BY MUTATION

A THESIS

Presented to

The Faculty of the Division of Graduate Studies

By

Jeanne Marie Hanks

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Information and Computer Science

Georgia Institute of Technology

February, 1980

ii

ACKNOWLEDGEMENTS

I am grateful for the support of this thesis in part by

The US Army Institute for Research in Management Information

and Computer Science, ARO Grant No. DAAG29-78-G-0121 and

The Office of Naval Research, Grant No. N00014-79-C-0231.

I would like to thank my thesis advisor, Dr. Richard

A. DeMillo for providing continual support, thoughtful

criticisms, and valuable suggestions for this thesis, and

the members of my reading committee, Dr. Richard J.

LeBlanc and Alton P. Jensen, for their helpful comments and

suggestions.

I would also like to thank Allen T. Acree for his as-

sistance in implementing the Cobol Mutation System.

I am also grateful to the graduate office for the

waiver of certain format requirements so that this thesis

could be generated on the PRIME-400 mini-computer.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ii

LIST OF ILLUSTRATIONS iv

Chapter

I. INTRODUCTION I

II. COBOL MUTATION SYSTEM (CMS.1). . 10

III. EXPERIENCE 36

IV. CONCLUSION 66

Bibliography. 68

Appendix

A. COBOL TUTORIAL. 69

B. SYSTEM DOCUMENTATION. 81

Acce~o Flor
nTis Gli.AlI

DX TABD-~£C B n

im[

-B v - ---------

..-

...............

iv

LIST OF ILLUSTRATIONS

Figures

1. CMS Interaction 4

2. CMS File Layout 18

3. MOVENW and MOVENM Original Program Listings... 49

4. MOVENW and MOVENM Listings With Equivalent

Mutants and Mutant State Information 50

5. MOVEED Original Program Listing 57

6. MOVEED Test Case that Uncovered an Error .. 58

7. Corrected Program Section of MOVEED 60

8. MOVEED Test Case that Uncovered Second Error 60

9. MOVEED Final Corrected Program Listing 62

10. MOVEED Status Information after Testing. 63

I

I

ABSTRACT

I
Testing Cobol Programs by Mutation

Jeanne M. Hanks

225 PagesI
Directed by Dr. Richard. A. DeMillo

Program mutation is a testing technique which has been
I

applied to Fortran programs[ABDLS]. This thesis will

describe the application of mutation to the Cobol language

in an automated program mutation system. The thesis will

describe the development of a Cobol Mutation System (CMS.l),

its testing using Fortran mutation analysis, and the subset

of Cobol that is supported by CMS.i. The internal

representation selected to represent the Cobol source

statements and a description of the mutant operators that

are implemented in CMS.l will also be supplied.

*\

I\

Ii

I

9 1
pI

CHAPTER I

INTRODUCTION

Program Testing

Methods of assuring program correctness can be divided

into two different approaches: program proving techniques

and program testing techniques. Program proving involves a

formal proof that a program performs correctly [DLP]. This

approach is currently ineffective because the proofs are

generally hard to produce manually and are often incorrect
I

or prove the wrong result (DLP].

The goals of program testing are to increase confidence

that a program will perform as desired, to discover errors,

and to provide some measure of performance. Various tech-

niques have been proposed to reduce testing to a systematic

methodology. These techniques include random generation,

symbolic execution, and mutation analysis.

Random generation of test cases is easy to concep-

tualize and to implement but is rather inefficient (DLSl].
$

The number of test cases necessary to execute the 'normal'

flow and the 'exception' flow in a program can become very

large.

Symbolic execution of a program produces better test

$8

2

data than the random generation method. Variables are

treated as algebraic unknowns and constraints are generated

in terms of those unknowns to indicate those restrictions

which data must satisfy if a certain path is to be executed.

Symbolic execution generates data which executes every

statement in the program and executes each branch.

Mutation analysis involves generating test data by any

means that is available, then applying the technique to gain

some measure of confidence of test "coverage". Through the

mutation process a set of test data is generated that

increases the confidence of a program's correctness.

During mutation a program is perturbed in simple ways

which simulate typical programming errors. This process

generates a variety of mutant programs. Given a set of test

data that the programmer believes tests his program, the

mutant programs are distinguished from the original program

by their behaviour on the test data. Test data which is

able to distinguish all non-equivalent mutants of a program

must thoroughly exercise the program and, hence, provide

strong evidence of the program's correctness [ABDLS].

Cobol Mutation

An automated system for Cobol Mutation Analysis (CMS.l)

has been developed and implemented at Georgia Tech on a

PRIME 400. CMS.1 has been derived from the Pilot Mutation

System (PIMS or FMS.l) for Fortran program mutations which

was designed at Yale University and has been implemented at

3

Yale, Georgia Tech and the University of California,

Berkeley [BDLS]. CMS.1 has the added capability to handle

I/O which is not currently available for Fortran.

CMS.1 is an interactive system that accepts as input a

Cobol program and representative test data, which, when ap-

plied to the Cobol program, produces reference output that

the programmer has verified to be correct. CMS.l generates|I
a large set of mutants of the Cobol program and executes

these interpretiely. The resultant outputs are compared to

the reference output to identify (1) deficiencies in the

test data, or (2) functionally equivalent versions of the

program which are possibly more efficient. Through this

interactive process, the user can become more confident of

the program's correctness. For a detailed study of this

aspect of mutation see [ABDLS, AA].

CMS.I execution consists of five main phases: ENTRY,

PRE-RUN, MUTATION, INTERPRETATION, and POST-RUN. Figure 1

shows interaction with CMS.1.

An input program, P, is parsed into an intermediate

code. If any Cobol syntax errors exist in P, the errors are

displayed at the user's console. When no syntax errors

exist and the intermediate code has been created, mutant

descriptors for the program are generated. Now the original

program is executed interpretively on a set of test data

supplied by the user. The results for the test data are

shown to the user who verifies them as either acceptable or

-

CD/

CCD

I- I---

Ct) 0

w -~ '-
I-J X~

-91

I- "4

I-L

CD CO

co 1=

5

unacceptable. The user then has the opportunity to activate
p

programs of some or all mutant types that have been

generated for the original program. The results of the

mutant runs are displayed for the user.

The ENTRY phase interacts with the user and initializes

the system. The user gives the name of the program file to

be tested. The internal files necessary for CMS.l runs are

created by using the program's file name and adding ex-

tensions to this name. For example, the files which are

created are:

filename.MR mutant record file
filename.MS mutant status file
filename.LO log file
filename.TD test data file
filename.TS test status file
filename.IF internal form file

The ENTRY phase determines if the CMS.I run is the

initial run or a continuation of a previous run by checking

whether these files exist or not. Even if this run is a

continuation, the user is given an opportunity to restart

the analysis. If the run is a continuation of a previous

run, then the files are loaded. If this is a fresh run,

then the program is parsed and its internal files are

created (MEMORY, SYMBOL TABLE, CODE, and STATEMENT files).

At this time, all the mutant records for the program are

created.

The PRE-RUN phase interacts with the user to obtain

test cases. These test cases may be contained in files so

6

the user enters the name of the data file or the test data

may be entered directly into CMS.I. When all the input test

data has been given, the program is interpreted on the data.

A copy of the test cases and the results are displayed for

the user. The user is then asked to indicate if the test

cases are acceptable or not. A test case is acceptable if

it generates correct results. Any test cases which are

marked as unacceptable are deleted from consideration.

The MUTATION phase gains control at this point. The

user is given a list of the mutant types, for example scalar

for scalar replacement, relational operator replacement,

etc., that can be considered and asked which one he would

like to activate. Once the mutant programs have been ac-

tivated, they are executed interpretively on the test data

that has been supplied. When mutants are being executed rn

a test case, only those mutants that affect a statement

which is executed by the test case are interpreted. For an

explanation of the mutants that are implemented in CMS.I,

see the discussion on the MUTANT RECORD file.

The INTERPRETATION phase is invoked by the PRE-RUN

phase to execute the original program on a set of test data

with execution returning to the PRE-RUN phase. The

INTERPRETATION phase is also invoked in a loop by the MUTA-

TION phase for interpreting the mutants and obtaining

results of the mutants.

The interpreter uses a program counter, PC, to control

7

flow through the STATEMENT table. Some error checking is

done by the interpreter; the errors that can be caught and

their associated error codes are:

I TRAP, execution beyond end-of-code, or SIZE ERROR
without an exception handler.

2 TIMEOUT
more statements have been executed than is allowed.

3 DATA FAULT
incorrect mixing of numeric and alphanumeric data.

8 4 UNDEFINED
attempt to reference an undefined data item.

5 I/O FAULT IN OPEN/CLOSE
attempt to open a file that is already opened or
attempt to close a file that is not opened.

6 ATTEMPT TO READ PAST EOF
7 OVERWRITE OR OVERREAD, COMPARED TO ORIGINAL PROGRAM

this error is detected when a mutant program tries
to read or write more data than the original program
did.

8 OUTPUT FILE TOO LARGE TO FIT IN BUFFER
the programs output exceeds the limits of the CMS.l
system.

9 ARRAY ELEMENT OUT OF BOUNDS
10 INCORRECT OUTPUT

output of mutant program differs from that of the
original test program.

11 ILLEGAL CODE IN INTERNAL FORM
incorrect internal code has been generated by the
system.

A variable is used to communicate errors to the PRE-RUN

phase and the MUTATION phase.

When the interpreter executes a mutant, the results are

compared with the original program output as it is generated

(i.e., when a write statement is executed). If the two out-

puts are not the same, then interpretation is halted and an

error code is reported to the MUTATION phase so that mutant

will be marked as 'killed'. The main structure of the

interpreter is based on a Fortran COMPUTED GO TO statement.

$..

8

For a detailed discussion of the interpreter, see the

documentation for SUBROUTINE INTERP.

After all the mutant programs have been executed, the

results are displayed for the user during the POST-RUN

phase. The user may see the live mutants, mark mutants as

equivalent, turn previously marked equivalent mutants back

on, stop the run, or loop back to the beginning of the run

where more test cases may be entered.

If the mutants are to be seen, it is necessary to first

'decompile' the internal code for the statement into a

recognizable Cobol statement. This 'decompiling' is accom-

plished by examining the internal form for a source

statement and reconstructing its structure using the HASH

TABLE for the printable names of variables.

Plan of Presentation

The purpose of this thesis is not to justify mutation

analysis as a testing tool but to describe the implementa-

tion of a mutation system for Cobol. The Cobol system is

written in Fortran and several major routines have been

tested on the Fortran mutation system. A detailed discus-

sion of the Cobol Mutation System (CMS.1) is given in Chap-

ter II which includes a description of the subset of the

Cobol language supported by CMS.1, a description of the file

structures, and a description of the mutant oper-tors im-

plemented in CMS.I. Chapter III contains a sample run on

the CMS.1 system and a discussion of testing CMS.l routines

9

on the Fortran mutation system, FMS.2. The conclusion is in

Chapter IV which contains suggestions for improving the

Cobol mutation system. Appendix A contains a Cobol tutorial

of the Cobol subset suppported by CMS.l and Appendix B

contains detailed documentation on each routine in the CMS.l

system.

C

10

CHAPTER II

COBOL MUTATION SYSTEM (CMS.1)

Cobol Subset and Intermediate Code

The level of Cobol which can be accepted by CMS.1 is

referred to as level 1 Cobol. The Cobol source program must

be in the standard Cobol format with columns 1-6 containing

the sequence number (which is ignored by CMS.I); column 7 is

either blank or contains a hyphen for the continuation of a

non-numeric literal or contains an asterisk for a comment

line; information beyond column 72 is ignored (A]. A list

of acceptable Cobol verbs follows. For each verb the format

for the internal form generated by the parser for use by the

interpreter is given. A detailed Cobol tutorial is given in

Appendix A.

MOVE

MOVE {data name-lI literal) TO data-name-2

[data-name-3]

The internal form:

<MOV><n><source><dest-I>.. .<dest-n>

ADD

ADD {data-l I literal-li (data-2 I literal-2] ... TO

data-m [ROUNDED] (ON SIZE ERROR imperative-statement]

II

The internal form:

<ADD><rnd><size><n><op-1>.. .<op-n>

The rnd field specifies whether to round the result or

not. The size field indicates if a size error clause was

given or not.

ADD GIVING

ADD {data-I I literal-I) [data-2 I literal-2}

(data-3 I literal-3]... GIVING data-m (ROUNDED]

[ON SIZE ERROR imperative statement]

The internal form:

<ADG><rnd><size><n><op-l>...<op-n><dest>

SUBTRACT

SUBTRACT fdata-l I literal-l} [data-2 I literal-2]...

FROM data-m [ROUNDED I [ON SIZE ERROR imperative

statement]

The internal form:

<SU><rnd><size><n><op-l>...<op-n>

SUBTRACT GIVING

SUBTRACT (data-l I literal-l} [data-2 I literal-2]...

FROM (data-m I literal-m} GIVING data-n [ROUNDED

[ON SIZE ERROR Imperative-statement]

The internal form:

<SUG><rnd><size><n><op-l> ... <op-n><dest>

[,

12

MULTIPLY

MULTIPLY [data-i I literal-l} BY data-2 [ROUNDED]

[ON SIZE ERROR imperative statement]

The internal form:

<MUL><rnd><si ze><op-l><op-2>

MULTIPLY GIVING

MULTIPLY (data-i I literal-li BY (data-2 I literal-2}

GIVING data-3 [ROUNDED] [ON SIZE ERROR

imperative-statement

The internal form:

<MUG><rnd><size><op-i><op-2><dest>

DIVIDE

DIVIDE (data-i I literal-i) INTO data-2 [ROUNDED

[ON SIZE ERROR imperative-statement]

The internal form:

<DIV><rnd><si ze><op-l><op-2>

DIVIDE GIVING

DIVIDE (data-i I literal-i) (INTO I BY }

(data-2 I literal-2} GIVING data-3 (ROUNDED]

[ON SIZE ERROR imperative-statement]

The internal form:

<DIV><rnd><size><op-l><op-2><dest>

For the internal form, the parser codes both the BY and

INTO options in the form of the INTO. CMS.I will accept

both forms of the DIVIDE GIVING statement.

1

13

COMPUTE

COMPUTE data-i [ROUNDED] = {data-2 I

literal-1 I arithmetic-expression)

[ON SIZE ERROR imperative-statement]

The internal form:

<COM><rnd><size><ident><arithmetic expression>

Where ident refers to the data item that receives the

result of the compute.

GO TO

GO TO procedure-name

The internal form:

<GO><procedure>

GO TO ... DEPENDING

GO TO procedure-name-i [procedure-name-2]...

DEPENDING on data-name

The internal form:

* ; <GOD><n><ident><proc-l>.. .<proc-n>

PERFORM

C PERFORM procedure-name-i C THRU procedure-name-2]

The internal form

<PEV><proc-l><proc-2>

I -

14

PERFORM-VARY ING

PERFORM procedure-name-1 C THRU procedure-name-2]

VARYING data-name-i FROM fliteral-2 I data-name-2}

BY {literal-3 I data-name-3} UNTIL condition-i

The internal form:

<PEV><proc-l><proc-2><id><low><high><inc>

<REPl><low><high><inc><start><stop>

The REPI operation for the internal form of a PERFORM

VARYING statement is an internal operation to aid in the

repeating of the procedures. After the procedures are

executed the control passes to this statement where the con-

dition can be tested for its truth to determine if the

procedures should be executed again or if the PERFORM VARY-

ING is to be terminated.

PERFORM TIMES

PERFORM procedure-name-i [THRU procedure-name-21

{data-name-i I integer-l} TIMES

The internal form:

<PET><proc-l><proc-2><ident>

<REP2><count> <start> <stop>

As in the PERFORM VARYING, it was necessary to im-

plement another internal operation for the PERFORM TIMES to

determine how many times the procedures have been executed.

The count field is decremented each time the procedures are

executed until it is zero and the PERFORM TIMES is com-

15

* pletely executed. The start field is a pointer to the first

statement in the procedures being PERFORMed and the stop

field contains the statement number of the last statement

being PERFORMed.

PERFORM UNTIL

PERFORM procedure-name-l (THRU procedure-name-2]

UNTIL condition-i

The internal form:

2 <PEU><proc-l><proc-2><logical expression>

IF

IF condition {statement-i I NEXT SENTENCE }

[I ELSE) (statement-2 I NEXT SENTENCE }]

The internal form:

<IF><ELSE-statement pointer><logical expression>

OPEN

OPEN INPUT [file-name] ...

OPEN OUTPUT [file-name] ...

The internal form:

* <OPEN><l 1 2 1 ... 1 20>

Where 1 thru 10 reference one of the ten input files

and 11 thru 20 reference one of the ten output files.

$

Sm

16

CLOSE

CLOSE file-name-1 [filename-2] ...

The internal format:

<CLOSE><l I 2 I ... I 20>

READ

READ file-name RECORD [INTO data-name]

AT END imperative-statement

The internal form:

<READ><1 I 2 I ... I 10><into-ident>

WRITE

WRITE record-name [FROM data-name]

The internal form of this statement is:

<WRITE><ll I 12 I ... I 20><from-ident><advance>

STOP

STOP RUN

The internal form:

<STOP>

There are two operations that are coded by the parser

for use in the CMS.l system. These two operations are not

supported in the Cobol subset and will not be compiled by

the parser. These two operations are the RETURN and the NO-

OP. These operations are needed to implement the PERFORM

verbs; when executing a PERFORM, it is necessary to return

17

* program control to the statement following the PERFORM

statement after the last statement of the paragraph range

has been executed. To make this feasible, the parser

inserts a NO-OP at the end of each paragraph and the

interpreter changes the NO-OP into a RETURN, if a PERFORM is

being executed.

File Structures

There are several files the system produces in order to

store information from one run to the next. These are shown

in Figure 2, which also outlines the major functions of each

phase. The major functions are:

The internal form file stores the parsed version

of the program.

The test data file stores for each test case, the

test data input and the results of execution of that

test data.

The mutants information file keeps the mutant

descriptor records plus various other counts on

what types of mutants have been produced.

For a more detailed discussion see [BDLS].

INTERNAL REPRESENTATION

The 'INTERNAL FORM' of a program consists of the

STATEMENT table, CODE array, SYMBOL TABLE, MEMORY array, and

HASH TABLE. The INTERNAL FORM file contains, in addition to

18

oil

St
I6

Ma0

600

Aft-

19

* these files, the sizes for each of the files. These sizes

are stored in the beginning of the INTERNAL FORM file; fol-

lowed by the STATEMENT, CODE, SYMBOL, MEMORY, and HASH

files. The INTERNAL FORM files are created when the program

is parsed. Due to the nature of the CMS.l system there are

several levels of indirection which have been incorporated

in order to maintain all the information that is necessary

for mutation.

Every entry in the STATEMENT table references its code

in the CODE array which contains references to the SYMBOL

TABLE for variables, literals, paragraph-names, etc. and

finally the SYMBOL TABLE contains references to memory

locations for variables and literals in the literal pool

contained in low memory. The SYMBOL TABLE also contains

references to the HASH TABLE for a variable's name; this is

usually used for 'decompiling' a statement.

STATEMENT TABLE FILE

The STATEMENT table contains an entry for each

executable statement contained in the program. The file

contains records of three elements each with the following

format:

Position Use

1 - reference to the code array for the statement

20

2 - line number of the associated source listing

3 - statement level

0 - continuation of a statement

1 - beginning a new statement

2 - n - depth in a conditional statement

CODE ARRAY

The CODE file is a sequential array that contains the

intermediate code for each Cobol statement; it also contains

an element giving the length of the code for a statement.

The length of each Cobol statement varies depending on the

operation and the length can even vary for the same type of

operation.

This organization of the CODE array allows for easy im-

plementation of mutant descriptors. It is not necessary to

alter the internal code for the original source statement

because the internal code fo:- the mutated statement can be

appended to the end of the code array. The statement table

entry for the code reference can be changed to reference the

mutated statement. Cleaning up after a mutant program is

executed is accomplished by changing the statement table

reference back to the internal form of the source statement.

SYMBOL TABLE

The SYMBOL TABLE has been designed to contain important

information that must be obtained at run time. It is thus

A m% ,., - i ll '

21

necessary for the SYMBOL TABLE to be resident in core during

execution.

The first record in the SYMBOL TABLE is for the name of

the Cobol program. The next 20 records are reserved for the

INPUT and OUTPUT files that can be used in the Cobol program

(CMS.I allows up to 10 input files and 10 output files).

The reserved words ZERO and BLANK are used so widely in most

Cobol programs that we have included these variables

automatically in the SYMBOL TABLE and in MEMORY. The rest

of the SYMBOL TABLE is created by the parser. Items are

entered into the SYMBOL TABLE as they are encountered in the

program. The HASH TABLE is used to determine if a data item

has been entered previously or not. All the data items

defined in a Cobol DATA DIVISION are entered in the same or-

der as they are encountered. After the DATA DIVISION is

parsed, the PROCEDURE DIVISION is parsed and the PARAGRAPH-

NAMES and literals are entered into the SYMBOL TABLE. The

SYMBOL TABLE file is an array containing 10 elements with

the following information for each record:

Position Use

1 - pointer to the hash table for the printable name,
this is used for 'decompiling' a statement.

2 - type
1 - unsigned numeric
2 - signed numeric
3 - alphanumeric
4 - edited
5 - group item
6 - continuation of a table item
7 - numeric literal

22

8 - alphanumeric literal
9 - paragraph name

3 - level number, or
beginning statement number if this is a paragraph
name entry

4 - number of digits for a numeric item, or,
memory location for a PICTURE item, or,
ending statement number if this is a paragraph
name entry, or
multiplier for the first subscript if this is
a table item entry

5 - memory location, or
multiplier for the second subscript if this is
a table item entry

6 - length of the item in memory, or
maximum allowed subscript for the first subscript
if this is a table item entry

7 - table level
0 - scalar
1 - one level table, row item
2 - two level table

or, the maximum allowed subscript for the second
subscript if this is the second row of informa-
tion table item entry

8 - pointer to the value string in the literal pool,
if a VALUE clause was specified, or
the number of occurrences in the second row for a
table item entry

9 -SYMBOL TABLE entry for a redefined item

10 - Number of the source statement for the data-item
entry.

MEMORY

The MEMORY array contains the Cobol source program's

memory and the storage areas necessary to execute a Cobol

program. MEMORY is a sequential single-dimension array.

The first thirty elements are reserved for the interpreter's

working storage. The literal pool follows the working

23

storage. This literal pool contains the PICTURE

specifications for the edited data items, constants used in

the Cobol VALUE clauses, and any literal constants used in

the program. The Cobol variables ZERO and BLANK are the

first two items in the literal pool. A variable is kept in

COMMON to contain the location of the end of the literal

pool. The working memory follows the literal pool and

consists of character data. PICTURE items are the only

items that do not have all their auxilliary information

contained in the SYMBOL TABLE because they need more in-

formation than can be contained in one record; therefore,

three extra words are stored in memory with a PICTURE's

description. The structure of a picture item follows:

Position Use

1 - Picture length
2 - Number of digits in the picture
3 - Number of decimal digits in the picture
4 - The actual picture description

HNSH TABLE

The HASH TABLE is used to hold the printable names of

Cobol reserved words, program file names, and variables.

The HASH TABLE contains the names for all the RESERVED

words, the Cobol program name, the Cobol input and output

file names, the variables, and the paragraph names. Each

record in this file contains 17 words. The first 15 words

are used to store the name with 2 characters per word; Cobol

24

allows a maximum of 30 characters per name. The 16th word

contains the number of characters actually used in the name

and the 17th word is the location in the SYMBOL TABLE for

this item. The record layout is as follows:

Position Use

1 thru 15 - Print name with two characters per word.
16 - Number of characters in the print name.
17 - SYMBOL TABLE location for the item.

TEST STATUS FILE

The TEST STATUS file contains status information for

each test case that is accepted for CMS.1. Each record of

the file contains 42 words of information. The first record

of the file indicates which of the twenty allowable Cobol

files are used, how many test cases have been defined, how

many test cases have been defined during the current run,

and the next available location in the file for appending

information for the next test case to be defined. Note that

INPUTO is the first Cobol input file and that INPUT9 is the

tenth input file and similarly for the output files. The

format of the first record in the TEST STATUS file is as

follows:

Position Use

1 - Indicates if INPUTO has been used or not.
0 - not used
1 - used

2 - Indicates if INPUTI has been used or not.
0 - not used
1 - used

Ip

25

3-20 - Similar to the above for INPUT2 thru INPUT9

and for OUTPUTO thru OUTPUT9.

21 - Total number of test cases.

22 - The number of test cases previously defined.

23 - Location of the next available record in this
file for appending information for a new test
case.

After the first record for file information, there are

two records for each test case. The first contains informa-

tion about the number of records in each Cobol input and

output file and the starting position for the file in the

TEST DATA file. The format of the TEST STATUS file is:

Position Use

1 - The starting position in the TEST DATA file for

INPUT 0.

2 - The number of records in INPUTO.

3 - The starting position in the TEST DATA file for
INPUT1.

4 - The number of records in INPUT1.

5-40 - Similar to the above for the other INPUT and OUTPUT
files.

41 - The number of statements in the original program
that are executed by this test case.

The second record for a test case is a bit map which

indicates which statements are executed by the test case.

The first bit of each word is not used so there are 15

usable bits per word. There are 42 records which give a

maximum of 42 x 15 = 630 bits per record. For Cobol

S

26

programs with more than 630 procedure division statements,

either the record size for the TEST STATUS file will have to

be increased or more than 2 records per test case will have

to be used.

TEST DATA file

The TEST DATA file is a sequential file that contains

the input and output for each test case. The Cobol input

for all the input files used by the original source program

is stored in sequential order in the TEST DATA file followed

by the output files generated by the original source program

for a test case. The information for additional test cases

is stored in the same manner following the existing data.

The data is stored in a packed format by SUBROUTINE PACK.

This packed format contains a character followed by a count

of how many exist together; if a character is not repeated

in the file, then it has no repeat count associated with it.

An initial segment of the ASCII codes represent unprintable

characters. Values in this initial segment are treated as

repeat counts. The subroutine PACK breaks up long repeat

strings in order to keep repeat counts within bounds.

(Note: For portability, EBCDIC also has an initial segment

of nonprintable characters). The reason this packing is

done with repeat counts is to save storage space. The

character and its count are stored in half-words of one byte

each.

27

MUTANT STATUS FILE

The MUTANT STATUS file is created by appending .MS to

the filename of the program being tested. This file

contains status information about the mutants concerning the

mutant types that have been turned on; the number of mutants

created for each mutant type; a pointer for each mutant type

to the first record in the MUTANT RECORD file; the number of

'live' and 'dead' mutants; and the number of mutants that

are 'killed' by each of the eleven errors detected by the

interpreter.

The first record on the MUTANT STATUS file contains a

count of the total number of mutants created. This count is

in the first word of the 16 word record. The next several

records contain header information for each mutant type.

The header uses four words to store its information; the

header format is:

Psition Use

1 - Mutant type.
2 - On or off

0 - off
1 - on

3 -On or off this run
0 - off
1 - on

4 - Location in the MUTANT STATUS file for the
status block.

The MUTANT STATUS file has 16 words per record. This

means that four headers can be placed in one record; since

there are currently 25 mutant types, 5 records are needed to

store the header information. The information contained in

.... .. I _

28

the header blocks is resident in core during the CMS.I run.

For each mutant type there is one record that contains

the mutant status information. The information and the

format for a mutant status record is:

Position Use

1 - Number of mutants for this type.

2 - Number of words for the bit map.

3 - MUTANT RECORD file location for the first mutant
record of this type.

4 - Number of live mutants.

5 - Number of dead mutants.

6 - Number killed by trap, attempt to execute beyond
the end of code by the STOP statement being deleted
or no SIZE ERROR clause given and a size error
occurs.

7 - Number killed by time-out.

8 - Number killed by data fault.

9 - Number killed by initialization fault.

10 - Number killed by I/O fault in OPEN or CLOSE.

11 - Number killed by attempt to read past end-of-file.

12 - Number killed by writing more than original program

13 - Number killed by output too large for the buffer.

14 - Number killed by array subscripts out-of-bounds.

15 - Number killed by incorrect output.

16 - Number killed by garbage in the CODE array.

Following these records are the bit maps for the live,

dead, and equivalent mutants, where there is one bit for

each mutant. In all of the bit maps the first bit (sign

29

bit) of each word is not used. The bit maps are of varying

length depending on the program and on the mutant operators.

The number of records needed for a bit map is rounded up to

the nearest whole-record size. There are four words per

record with 15 usable bits per word, thus, there are 60 bits

per record and the number of records necessary to store a

bit map is the next largest integer greater than the number

of mutant divided by 60 bits per record.

MUTATION RECORD FILE

The particular mutant types that have been implemented

in CMS.I are data, input/output, control structure, and

procedural mutations. Data mutations alter the data

descriptions contained in the SYMBOL TABLE. INPUT/OUTPUT

mutations deal with changing a file reference in one read or

write statement. For example, an input file may be ex-

changed for another input file in a read statement, or an

output file exchanged with another output file in a write

statement; but an input may not be exchanged with an output.

Control structure mutations alter statements that deal with

program flow. Procedural mutations are those mutations

which are applied to procedure division statements.

The mutant record file consists of n records, where n

is the number of mutants created for the program. Each

record is 4 integers long. All the mutant descriptors for a

mutant type are stored contiguously in the mutant record

$

30

file. The first word is the mutant type and the other three

contain information for that mutant type. A mutant record

exists for each mutant that can be applied to a program.

The following is a list of the mutants and their descriptor

records (an x in any field means that that field is not

used). All mutants that alter a statement are copied at the

end of the code array and the code reference in the

statement table is changed to refer to this mutant

statement. To restore the internal form after implementing

a statement mutant we only need to change the statement

table code reference to refer back to the original

statement. Data mutations alter the data descriptions to

the original statement. The following is an explanation of

the mutant types that are implemented in CMS.l.

1 Decimal alterations move implied decimal in numeric items

one place to the left or right, if possible.

<DEC><SYMBOL TABLE location><+l I -1><x>

Where +1 - add 1 digit to the fraction part,

-1 - subtract 1 digit from the fraction part.

2 Reverse occurs clauses reverses the row and column size in

a two-level table.

<REVERSE-OCCURS><SYMBOL TABLE location><x>

<SYMBOL TABLE 2>

3 Alter occurs clause changes the dimension of a one- or

two-level table by adding or subtracting 1 from the

dimension.

I

31

<ALTER-OCCURS><SYMBOL TABLE location><code><x>

where code = 0 means "add 1 to occurs",

= 1 means "subtract 1 from occurs".

4 Insert a filler (PIC X) in a record. This mutation is

aided by the fact that the parser inserts a dummy record

between each data item in the symbol table; this was

done so that the references in the code array to the

SYMBOL TABLE will not be affected by implementing this

mutant.

<INSERT><SYMBOL TABLE location><x><x>

5 Change a filler's size by adding or subtracting 1 to its

size.

<CHANGE-FILLER><SYMBOL TABLE location><+l I -1><x>

6 Reverse adjacent elementary items in a record. This is

accomplished by reversing the memory pointer contained

in the SYMBOL TABLE.

<REVERSE><SYMBOL TABLE location>

<next elementary location><x>

7 Input/Output reverses two file reference4s for input files

or for output files.

<F ILE><statement><x> <new file-code>

8 DELETE mutant deletes a statement from the program by mak-

ing it a NO-OP. This mutation checks for the necessity

of a statement.

<DELETE><statement><x><x>

9 GO-TO changed to a PERFORM statement is implemented by

32

changing the opcode.

<GO-PERFORM><statement><x> <x>

10 PERFORM changed to a GO TO.

<PERFORM-GO TO><statement><x><x>

11 THEN-ELSE clause reversal is implemented by negating the

condition. A special opcode, NIFOP, was created for im-

plementing this mutant.

<THEN-E LSE><statement>< x> <x>

12 STOP replacement mutation consists of changing a

statement to a STOP statement to verify the necessity of

a statement's existence.

<STOP><statement> <x> <x>

13 THRU clause adjustment extends the range of a PERFORM

statement. <THRU><statement><new paragraph><x>

14 TRAP statement mutation consists of inserting a TRAP

statement into the program after possible transfer

points for path analysis.

<TRAP><statement> <x> <x>

15 ARITHMETIC OPERATION SUBSTITUTION changes one arithmetic

verb for another. For example, change ADD to SUBTRACT.

<ARITHMETIC-l><statement><new operation><x>

16 COMPUTE OPERATION SUBSTITUTION exchanges an operand in a

compute statement.

<ARITHMETIC-2><statement><field><new operation>

where 'field' is the relative location in the code

description of the operator to be changed.

I

33

17 PARAMETER ALTERATION is used in COMPUTE statements to

change the position of a parenthesis by moving one

parenthesis one place to the left or right.

<PAREN><statement><from-field><to-field>

where the 'from-field' is the relative location in

the code description of the parenthesis in the COMPUTE

statement being altered and the 'to-field' is the loca-

tion to which the parenthesis is to be moved.

.8 ROUND mutation turns the 'rounded' condition on or off in

an arithmetic statement; ROUNDED is changed to trunca-

tion and vice versa.

<ROUND><statement><x><x>

19 MOVE mutation reverses the direction of the MOVE opera-

tion when only two fields are used, if such a reverse

would be a legal Cobol statement. For example,

MOVE DATA-l TO DATA-2. changed to

M4OVE DATA-2 TO DATA-I.

<MOVE><statement><x><x>

20 LOGICAL OPERATOR REPLACEMENT is implemented by changing a

logical operator to a different logical operator.

<LOGIC><statement><field><new value>

where 'field' is a relative location in the code

description for the logical operator being altered.

21 SCALAR for SCALAR replacement changes the reference from

one scalar to another scalar in a statement.

<SCALAR-SCALAR><statement> <f ield>

..£ i2 2 - 2

34

<new SYMBOL TABLE location>

where 'field' is the relative location in code

description.

22 CONSTANT for CONSTANT replacement replaces one reference

to a constant with another constant reference.

<CONSTANT-CONSTANT><statement><field><new location>

23 CONSTANT for SCALAR replacement.

<CONSTANT-SCALAR><statement><field><new location>

24 SCALAR for CONSTANT replacement.

<SCALAR-CONSTANT><statement><field><new location>

25 CHANGE CONSTANT mutant is used to change a numeric

constant by +1%, -1%, +1, or -1 whichever is largest.

To ease the implementation of this mutant, 'mutant'

values for each numeric constant have been inserted in

the SYMBOL TABLE right after the constant has been

inserted during the parse.

<CHANGE-NUMERIC-CONSTANT><statement><field>

<new location>

LOG FILE

The LOG FILE is used to contain important information

about a CMS.I session. This file is a sequential file which

can have some of its contents determined by the user (e.g.

by issuing an OUTPUT command). The CMS.l system

automatically stores some information in the LOG file. Dur-

ing the PRE-RUN phase a copy of the Cobol source program is

placed in the file. For each test case, the input file is

T

stored with the result for that test case; the results are

TEST CASE FAILED, TEST CASE REJECTED, and TEST CASE # ENTER

AND ACCEPTED. During the MUTATION phase a list of the

mutant types that are currently enabled is stored in the LOG

file. The POST-RUN phase stores the status information for

the pass. If the user marks any mutants equivalent, then

the number marked is stored in the file. The user may have

a list of the live mutants stored in the file or a list of

the test cases stored by specifying the OUTPUT command. If

the user aborts the run by issuing a KILL command, then he

is asked to enter a message explaining the reason for abort-

ing the run. This message is terminated by a control-C and

is placed in the LOG file.

I

36

CHAPTER III

EXPERIENCE

Cobol Example

The following is a script of a CMS.1 run on a program

originally from the Army SIDPERS personnel system. The

program has been modified somewhat, mainly in the reduction

of the record sizes to make a better CRT display. The

program takes as input two files, representing an old backup

tape and a new one. The output is a summary of the changes.

The input files are assumed to be sorted on a key field.

The program has 1195 mutants, of which 21 are easily seen to

be equivalent to the original program. Initially ten test

cases were generated to eliminate all of the nonequivalenc

mutants. Subsequently a subset of five test cases was found

to be adequate for the task. The entire run took about 16

minutes of clock time, and 2 minutes and 13 seconds of CPU

time on the PRIME 400.

The following is an example of the CMS.l run. User in-

put has been entered in lower case to distinguish it from

the system instructions and prompts. This is the interac-

tion at the pre run phase where the user has requested the

program being tested be displayed at the user's console.

37

WELCOME TO THE COSOL PILOT MUTATION SYSTEq

PLEASE ENTER THE NAME OF THE COROL PROGRA' fILE:*tog-changes
00 YOU dANT TO PURGE UOPKId FILES FOR A FRESH RUN ?,yes
PARSING PROGRAM

SAVING INTERNAL FORM
V0AT PERCENTAGE OF THE SU3STITUTIOV IUTANTS DO YOU WAIT TO CREATE?)132~PRE-RUN PHASE
CREATING MUTANT DESCRIPTOR RECORDS

SO YOU dART 1O SUSMIT a TEST CASE 7 >orogram

POGRA LAST COMPILED ON 11 $0.

1 IDENTIFICATION DIVISION.
2 PROGRAN-ID. POOAACA.
3 AUTHOR. CPT A d NOREHEAD.
A INSTALLATION. MRS JSACSC.
S DATE-dRITTEN. OCT 1973.
6 REMARKS.
7 THIS PROGRAM PRINTS OUT A LIST OF C4ANGES IN THE ETF.
S ALL ETF C44NGES WERE PROCESSED PRIOR TO THIS PROGRAM. T4
9 OLD ETF AND THE NEd ElF ARE THE INPUTS. BUT THERE IS NO
10 FURTHER PROCESSING OF THE ElF HERE. THE ONLY OUTPUT IS A
11 LISTING Of THE ADDS, CHANSES, AID DELETES. THIS PROGRAM IS
12 FOR HI USE ONLY AD HAS NO APPLICATION IN THE FIELD.
13
14 MoDIFIED FOR TESTING UNDER CP"S BY ALLEN ACREE
15 JULY, 1979.
16 ENVIRONMENT DIVISION.
17 CONFIGURI13 SECTION.
IS SOURCE-COMPUTER. PRIME.
19 OJECT-COqPUTER. PRINE.
23 INPUT-OUTPUT SECTION.
21 FILE-CONTROL.
22 SELECT OLD-ETF ASSD19 INPUTI.
23 SELECT %FW-ETf ASSIGN INMUT2.
24 SELECT PRNTR ASSIGN TO OUTPUTI.
25 DATA DIVISION.
26 FILE SECTION.
2? TD OLD-ETf
28 RECORD CONTAINS SO CHARACTERS
29 LABEL RECORDS ARE STANDARD
30 DATA RECORD IS OLD-REC.
31 01 OLD-REC.
32 03 FILLER PIC X.
33 03 OLD-KEY PIC X(12).
34 03 FILLER PIC X(67).
35S to NEdETF
36 RECORD CONTATS 90 CHARACTERS
37 LABEL RECORDS ARE STANDARD
3S DATA RECORD IS NEd-REC.
39 01 NEd-REC.

AO 03 FILLER PIC 1.
Al 03 NEW-(FY PIC X(12).
A2 03 FILLER PIC 1(6?).
43 ED PMTHR
44 RECORD CONTAINS 43 CHARACTERS
AS LABEL RECORDS ARE OMITTED
A6 DATA RECORD IS PRNT-LINE.
47 01 PRNT-LINE Pit 1(43).
46 dORkNG-STORAGE SECTION.
49 01 PRNT-WORK-AREA.
so 03 LINE1 PIC %(30).

S1 33 LINE2 PIC 1(32).

52 03 LINE3 PIC 5(23).
33 01 PRNT-OUT-OLD.
SA 03 NS-LN-1.
55 05 FILLER PIC X VALUE SPACE.

56 05 FILLER PIC 1XX3 VALUE '0 0.

57 05 LNI PIC X(30).

So OS FILLER PIC KK VALUE SPACES.

59 03 WS-LN-2.
60 OS FILLER PIE I VALUE SPACE.
61 OS FILLER PIC RIK% VALUE IL 1.

62 OS L1? PIC 1(0).

63 05 FILLER PIC XXX VALUE SPACES.
64 03 NS-LN-3.
6S OS FILLER PIC K VALUE SPACE.
66 OS FILLER PIC XXXX VALUE 'O S .

67 OS LNS PIC JI2M).
66 05 FILLER PIC NiX VALUE SPACE.

38

69 01 PUUMT-EM-OUI.
70 03 41-LN-1.PI xXVAU IN
71 05 FILLER PCgM~VLESN *

72 35 V-LM1 PIC 903).
73 05 FILLER PIC AIR VALUE SPACE.
74 03 NlW-LU-?.PCXXX AU
is 35 FILLS*PCXXX AU
76 OS 4-L#2 PIC 1(00).

P? DS FILLS% PIC RIX VALUE SPACES.

?a 03 NEWL*.43.
79 05 FILLS% PIC XXXXX VALUE * w

93 1)$ m-LNS PLC 1(20).

&1 05 FILLER PIC RIX VALUE SPACES.

82 PROCEDURE DIVISION-
as 0103-DPENS.
6 OPEN IPUT OLD-ETP NEM-ETF.
as OPEN OUTPUT PR.4TR.

86 0110-OLD-REA0.
8? READ OLD-ELF AT END 6O TO 3160-OLD-fOt.

88 0120-NEW4READ.
99 READ NEW-Elf AT END go T0 0170-4EW-EOt.
90 0130-COMPARES.
91 IF OLODKEV - 4EW-<FV

92 NEXT SEldlEvCE
?3 ELSE 60 TO 0143-CK-ADD-DEL.
94 It OLD-REC - 4EW-REC
95 60 to 3113-OLD-READ.
96 "OVE OLD-REC TO PRUT-WORX-AREA.
9? PERFORM 02i0-OLD-ART TsqRU 3210-EXI.
98 MO0VE NEO-REC TO PRNT-WORK-ARE4.
99 'ERFORm 3230-NJ-JRT TI4RU 3230-EXIT.
100 GO TO 0110-OLD-READ.
101 011.-CC-40DDDEL.
132 if OLD-xEV)- NEW-KEY
133 MOVE NEd-REC TO PRMT-W3RC-AREA
106 PERFOR-q 0200-mW-WAT THRU 0200-CIIl

135 Go t0 0120-Nf0-READ
13? 15-ES-ADTDDEL. K40-DL
136 LE OT 0150-CE-ADD-DEL.
128 14OVE OLD-REC ToOR47-WORR~-AREA.
109 PERFORM OZIO-OLDVWRT F-4RU 0210-EXIT.
110 RE4D OLD-ETE AT END

III moVE NEWdRFC TO PRVT-WORC-AREA
112 PERFORM* O200Nde#WRT THRU 0200-EXIT
11 GO TO 0160-OLD-EOF.
114 Go TO 3130-COMPARES.

'116 READ VEW-ElF AT END 4O TO 0160-MO.
17 mOVE NEW-REC TO PRNT-WORK-ARE4.
lieS PERFORM 0233-'4i-dRT THRU 0213-tIl.
119 so TO 3163-OLD-EOF.
120 01?0-NEU-EDF.
121 4OVE OLD-REC To PRNT-WORK-AREft.

122 PERFORM4 02I0OO-RY TMRU 3210-EXIT.
1?3 READ OLD-EyF AT Eqs GO TO 3180-tD).
126 Go To OI7ON-E)-oF.
125 3130-10J. MJEFOMR

V 1~26 CLOSE OLD-ElF NdEF*NR
127 ST3P RUN.
126 3203-NW-VAT.
129 MOVE LINEI TO %NLMI.
10 MOVE LIIE? TO Vi-042.
131 M4OVE L1MES TO V-043.
132 WRITE PINT-LINE FROM NEW-LN1-1 AFTER ADVANCING 2.
133 WRITE PRNT-LI4E FRO4 NEW-LN-2 AFTER ADVANCING I-

134 UNITE P#NT-LINE FROM Altd-LM-3 AFTER ADVANC1IG I.
135 0233-EXIT.
136 EXIT.
137 0210-OLD-0Rl.
I3$ ROVE LINEi TO L41.
139 ROVE LtNE? TO L42.
140 ROVE LIMES TO 0N3.
141 WRITE 0ANT-LIME FROM VS-LN-1 AFTER ADVANCING 2.
142 WRITE PR4T-LI4E FROM WS-LN-2 AFTE0 40VANCINS 1.

143 OWIE P40VT-LIVE PROM dS-LV-3 AfTER ADVANCING 1.
166 0210-EviT.
165 EXIT.

)-yes

39

S Now, the user is asked to enter a test case. C~S.1

asks for each CoboL inout fiLe by no-we. The input fiLes and

the resuLts are dis*Layed for the user at his consote. A

test case for this program is a pair of input fites. In

C4S.1 these say be created outside the system and referenced

by fite name, or may be entered "on the fty" during the ses-

* sion.

,1NERE IS OLD-ITF?

WEREIS E-TI

OLD-ETF PROVIDED To THE PROGRAM

112345679121111111IIIJJJJJJJJJK(EKKLLLLLLLLLLMNHHH44q P3339!s9GGG
j23456?8931?3yy1yVyYYTY6SSGGGIG6GFFFrFFFFFOODSDDDDDSSSSSSSSSSXXXKXXXEEEEI

WEW-ETF PROVIDED TO THE PROGRAM

J23656?S931?3YYTYYYYYY5GG6G6B6GGFFFrFFFFIDDODDDDSSSSSSSSSSKxxxxxxtEEI

P*%TR AS dRITTEV BY THE PROGRAM

O 11?3456?890121111IIIIIIOJJJJJJ
L JJJKKKKKKLKLLLLLLLLL4HNNN44N
D "44833D!S33899GSGGGG1

me II33456?890120000000000000000
E O0000000000OO0O0000O03O00O0O00

0 J23456?S9O1?3YhvYYvvvascszs
L SG66FFFFFFFFODDDOOSSSSSSS
* SSSXUKXXXRXEEEEEEE

M J23456S99123YYVVYYYYT1666SS6
E SSSFFFFFFFFFOODODDDSSSSSSS
d SSSKXXXXEEEEEEEEE

01 3456?71 34UUUUUUUUUUMNHHHHH
9 "NH66S6666600ODDOSSSSSSS
d SSSEEEEEEEEEEAAAAAAA

THE PROSEAR TOOK a' STEPS
IS THIS TEST CASE ACCEPTASLE I)yes
00 IOU dAmet TO SUBMRIT A TEST CASE I Pno

The foLLowing is the interaction necessary during the

mutation phase. The user must indicate which mutant tyoe

Drograus are to be executed.

qUTATION PHASE

WHAT NEW MUTANT TYPES ARE TO BE CONSIDERED ? *u.tegt

ENTER THE NUMBERS OF THE MUTANT TYPES YOU WANT TO TURN ON AT THIS TINE.

4 *.. INSERT FILLER TYPE e*et

S *** FILLER SIZE ALTERATION TYPE **e*
6 *** ELEMENTARY ITEM REVERSAL TYPE
7 .. o. FILE REFERENCE ALTERATION TYPE *00*
a *'** STATEME4T DELETION TYPE

10 *.** PERFORM --), O TO TYPE *e
11 *.** THEN - ELSE REVERSAL TYPE *ee
12 ** STOP STATEMENT SUBSTITUTION TYPE ***

13 **0* T4RU CLAUSE EITENSION TYPE **.
1A *o*e TRAP STATEMENT REPLACEMENT TYPE **
19 **M* MOVE REVERSAL TYPE *'**
20 *** LOGICAL OPERATOR REPLACEMENT TYPE ***

21 *0*0 SCALAR FOM SCALAR REPLACEMENT ****
22 **0 CONSTANT FOR CONSTANT RFOLACERENT *0**

23 0.0* CONSTANT FOR SCALAR REPLACEMENT
25 **** CONSTANT ADJUSTMENT **0

TYPES ?) to 1A Stop

The oost run phase disolays the mutant status as a

resuLt of the test cases currentLy defined. The iser is

given the opoortunity to see the Live mutants and the

equivalent mutants during this ohase and must indicate i

the session is to be continued or not. For this ex3n3Le,

the user soecified the 'Loop' ootion so that the CMS sessicn

wiLL continue.
TESTCASE 1

250
2894 CONSIDERED 224 KILLED 60 REMAIN

MUTANT STATUS

TY2E TOTAL LIVE PCT EUIV
INSERT 41 7 82.93 0
FILLSZ 38 14 63.16 0

ITEMRV 21 0 100.00 3
FILES 5 1 83.00 a
DELETE 54 13 75.93 0

PER 0 7 2 71.43 3
IF REV 3 1 66.5? 3
STOP 53 10 81.13 3
THRU S 2 75.00 a
TRAP 54 13 81.48 2

TOTALS
264 63 ?8.8? 0

0D YOU dANT TO SEE THE LIVE 4UTANTS?no
DO YOU dANT TO SEE THE EQUIVALENT qUTANTS?)nO

dO0LO YOU LIKE TO SEE THE TEST CASES?)n*
LOOP OR HALT ?)LoDD

MT

41

* The user has indicated that the session is to continie.
DO IOU~d"S ANTOSNIT A TEST CASE ? 3,yes
W4E4E IS OLD-ETF'

WHERE is SEW-ElF?

OLDEFTf PROVIDED TO THE PROGRAM

0000O00OO0O12111111IIIIJJJJJJJJJJCKKKCCKKLLLLLLLLLUmNNNUNNNS33DSD&66GG
11234S?9Oi2IIIIIIIIIIJJJJJJJJJJCKkKKCKKKLLLLLLLLLLHNNNNNNNNJNI90hIS3ISD66GG
J234S6?S931231TTTV1TV66E66666GFFf FF FFDDDDDDDSSSSSSSSSSXXXKKKXXEEE IE

NEW-ElF PROVIDED TO THE PROGRAM

112345A?90iIIIII1lIIJJJJJJJJJJCKKK~CEKILLLLLLLLLLNUNNHNNNNSB3ISS933S&6GIS
JZ34S6?S93 ZvYTTYTYlTG656S61GB66FFFFFFFFFFODDODDDDDSSSSSSSSSSXXXXXcXXXEEEEE

PINTS AS WRITTEN ST THE PROGRAM

o OOOO3030O12?I11liIIIJJJJJJ
L JJJKCCCKECKKKLLLLLLLLLLiiNdN

THE PROGRAM TOOK 44 STEPS
IS THIS TEST CASE ACCEPTABLE ?)yes
03 YOU dANT TO SUBMIT A TEST CASE ? aoyes
WHERE IS 3O-ETF?

WHERE IS lEW-Elf'

OLD-Eli PROVIDED 10 THE PROGRAM

1123A5S912I1IIIIIIKJJJJJJJJJIKCKKUKEKKLLLLLLLLLLNNNNNNNNNDD333IDI6GGGS

J234567690123TTYTIYTTII&BSS66SG96FFFFFFFFFFDDODDODDDSSSSSSSSSSXlxKIXIEEEEE

%Ed-ElF PROVIDED TO THE PQO;RAM

l 23A51.75901211111111 IJJJJJJJJJJKKKKKKKEKLLLLLLLLLLNNdIlN'NN3SI333933SGE66

J23AS6?99123TTIVTTYVl66SBGsGg&FF fF F iF F F DDDDDDSSSSSSSSSSXxXKKX EEEE

PRNTA AS JRITTEN BY THE PROGRAM

0 11234566890121111111111KJJJJJJ
L JJJCKKCKKKKKKLLLLLLLLLLNNNNRNH
* NNNBB990989DUG66GS

1 1234508S9012111111111111J11J1
E JJJKCKKEKCKKLLLLLLLLLLNVINNNNH

THE PR06RAR TOOKE 5 STEPS
IS THIS TEST CASE ACCEPTA3LE ? syes
0O YOU WANT TO SUBRIT A TEST CASE ?)yes
WHERE IS OLD.EIF?

WHERE IS NEW-Elf?
)t 10
OLDETF PROVIDED TO THE PROGRAM

00O0000000000000000000003000000000000000000o

NEW-Elf PROVIDED 10 THE PROGRAM

11234SAR90O211IIIIIIIIJJJJJJJJJJKICIVIKIIILLLLLLLLLLNNNNNNNSSSOS3USSSSSBGS
J234S6?SDOIZ3ITITIYSTT66SGSS6G6FFFFFfFfDDDDDDDDDDSSSSSSSSSSKXKKNKKKEEE
345676901 Z34UUuUUUUUuuHHNNHNNS66SIGG6DDDDDDSSSSSSSSSSEEEEEEEEAAAAA

PINT* AS WRITTEN BY TNE PROIRAM

L 00000000000000

N I123S6SS79O121IIIIIIIIIJJJJJJJ
9 JJJ9KKKKKKLLLLLLLLLLNNHN

42

0ii ?34s&7 "32t3YYTYYYYYG IG6GG

it SBFFFFFf:FDD0DD0D0SD5SSSSSSwUxx SSAXKXEEEE

N 34556931234UUUU UUU:UUHHHH4HH
E NHN&GG 56666UODDDD DDSSSS
w SSSEEFEECEEEAAAAAA

THE PRBA TOOK" 64 STEPS
IS HITST C ASE ACCEPTAS3LE ?),yes

So You dA'4T TO SUqIT A TEST CASE ?)Yes
UHERE is OLD-ETF?

WHERE IS 4EW-ETF?
),I I
50-Elf PROVIDED 7 TH ~E PROGRAM
1 234S67S90121111111111JJJJJJJJJJKKKKKKKKLLLLLLLLLLOINIHNHNSIAA9233III&"
J234S67S;012SVYYYYYYY&;6GSSGGFFP;#FVPPODDOO0DOOSSSSSSSSSSXXXK'XKXKEEE.E
36?8901 234UUUUUUUUUUHHHNHNHHHNGGGSGGGGGDDODODDODDSSSSSSSSSSEEEEEE.EEEEAAA4A

REiOETF PROVIDED TO THE PROGRAM

0310003003o0000o0o33000a202000O3000000O0
PRUTR AS dRITTEN BY THE PROGRA%

s 090000000000000000000000000
1 00003000000003

0 1234567890121111111111JJJJJJJ
L .JJCXKKKXKKKKKLLLLLLLLLLMNNNNEH

SJ234S6?a901z3YYYTYYTYYYSSTGiGG6
L 966PFFF FFFODSDDDDOODSSS SsSS
5 SSSXKXXKXXKXKKCEEEEE

o 345679OI234UUUUUUUUUURIHHHHH
L ftNHSSCGGBBDDDDDDOSSSSSSS
D SSSEEIEEEEEEEAAAAAA4

THE PROGRAM TOOK 64 STEPS
IS THIS TEST CASE ACCEPTABLE ?)WeS
03 YOU OANT TO SUBMIT A TEST CASE ?)-no
NUTATIOV POASE
WHAT NMdl MUTANT TYPES ARE TO SE CONSIDERED 31011

TESTCASE I -
250
533
750
614 C04SIDERES 640 KILLED 174 REqRAIN

--TESTCASE 32-

23 COSIDERED I2 KILLED 15? REMAIN

TYPE TOTAL LIVE PET ESUIV

SELETE 38 12 98.15 0

PER 60 7 0* 103.00 0
IF REV 3 10MA.00
STOP 53 2 123.03 D
TuOM 8 102.00

TRAP 34 00.00 0

q3VE R 13 2 102.03 0
LOGIC 15 1 93.33 0
sussrs 704 4 99.43 0
supecR 12 0 100.03 0
Savers SO 3 100.03 0
C ASJ 12 2 100.02 0

TOA& 1096 21 96.09 0

43

00 YOU NANT TO SEE THE LIVE qUTANTS?,yes

THE LIVE RUTANYS

FOR EACH WAHT : HIT RETJR4 TO CONTINUE. TYPE 'STOP' to STOP.
TYPE *EOUIV* TO JU06E THE UTANT EAUIVALENT.

oeetINSERT FILLER TYPE **

THERE ARE 3 MUTANTS OF THIS TYVE LEFT.
0 YOU NANT TO SEE THE'qyes
A FILLER Of LENGTH ONE HAS SEEN INSERTED AFTER
THE ITER dHICH STARTS ON LINE 52

ITS LEVEL NURSER IS 3

A FILLER OF LENGTH ONE HAS SEEN INSERTED AFTER
THE ITER WHICH STARTS OH LIVE S3

ITS LEVEL NURSER IS 3

A FILLER OF LENGTH ONE HAS BEEN INSERTED AFTER
THE ITE4 NHICH STARTS OH LINE 69
ITS LEVEL NURIER IS 3

**** FILLER SIZE ALTERATION TYPE '*0.

THERE ARE 12 MUTANTS OF THIS TYPE LEFT.
DO YOU WANT TO SEE THER?>yes

THE FILLER OH LINE 58 HAS HAD ITS SIZE DECREMENTED IT ONE.

THE FILLER OH LINE 58 HAS HAO ITS SIZE INCREMENTED IT ONE.

)

THE FILLER O4 LINE 63 HAS HAD ITS SIZE SECREMENTES BY ONE.

THE FILLER OH LINE 63 HAS HAD ITS SIZE INCREqENTED BY ONE.

THE FILLER OH LINE 6S HAS HAD ITS SIZE DICRE4ENTED BY OE.)

THE FILLER OH LINE 68 HAS HAS ITS SIZE INCREMENTED BY O4E.

THE FILLER 0% LINE 73 HAS HAD ITS SIZE DECRE4ENTED BY ONE.

THE FILLER ON LINE 73 HAS HAD ITS SIZE SECRERENTES BY ONE.

THE FILLER OH LINE 73 HAS HAS ITS SIZE INCREMENTED ST SHE.

THE FILLER ON LINE 7? HAS MAD ITS SIZE SECRERENTED BY OHE.

THE FILLER ON LINE 77 HAS HAD ITS SIZE INCREqEUTES BY ONE.

THE FILLER ON LINE 81 HAS HAD ITS SIZE SECRERENTED SY ONE.

THE FILLER ON LINE 81 HAS HAS ITS SIZE INC*EqENTEO BY ONE.

a... STATEMENT DELETION TYPE *..*

THERE ARE I MUTANTS OF THIS TYPE LEFT.
0 YOU MANT TO SEE TNEMY•pes
ON LINE 106 THE STATEENT:

60 TO 3150-C-ADD-DEL
HAS BEEN DELETED.

*ee LOSICAL OPERATORE1PLACEMENT TYPE 0..,

i2

44

THERE ARE 1 RUTAVTS Of TIS TY
0
E LEFT.

00 YOU WANT TO SEE TRET)yes

ON LINE 102 THE STATEMENT:
IF OLD-CE 3 VEd-KEY

HAS BEEN C4ANGED TO:
IF OLD-KEY NOT 4 NFM-KEY

S*** SCALAR FOR SCALAR REPLACEMENT ***

THERE ARE 4 MUTA4TS Of THIS TYPE LEFT.
00 YOU 4ANT TO SEE THE!?'YuS
ON LINE 129 THE STATEMENT:

MovE LIVEI TO N-LN
HaS SEEN CHANGED TO:

MOVE NEW-REC TO N-LNI

ON LINE 129 -THE STATEMENT:
MOVE LINEI TO -LNl

NAS DEEM CHAVGED TO:
ROVE PENT-WORK-ARFA TO N-LN1

ON LINE 138 THE STATEENT:
ROVE LINEI TO LNI

HAS BEEN CHANGED TO:
MOVE OLD-REC TO LN

ON LINE 136 THE STATEmenT:
MOVE LIVE? TO LNI

HAS BEEN CHANGED TO:

ROVE PRNT-VOR-AREA TO LI1

00 YOU WANT TO SEE TOE E4UIVALENT qUTANTS?)no
d3ULO YOU LIKE TO SEE THE TEST CASESM-no
LOOP OR HALT ?)hatt

STOP

JmL'

45

Testini CMS.l

Several routines from the CMS.l system have been tested

on the Fortran Mutation System (FMS.2). The subroutines

which were chosen comply very closely to ANSI Standard

Fortran.

FMS.2 will accept any ANSI Fortran program which does

not use complex arithmetic or input/output statements

[ABDLS]. FMS.2 will accept several subroutines for a test-

ing run and will also accept character data as input which

makes it possible to test CMS.l routines which store the

Cobol program and data in character format.

Some of the machine dependent features that had to be

rewritten were the PRIME Fortran functions 'AND', 'INTL'

(interger long) , 'OR', and 'RS' (right shift) . The 'RS'

function can be implemented by simple division; to shift

right n bits divide by 2 to the nth power. The PRIME func-

tion INTL, which converts a 16-bit integer into a 'long' 32-

bit integer, can be deleted because the FMS.2 test was con-

ducted on a 36-bit machine. The Fortran 'AND' function can

be implemented by subtraction and the 'OR' function is im-

plemented by addition, in the context in which they are used

in the tested routines.

In CMS.l a negative number is coded with a negative

sign placed in the low order byte of the word containing the

last character of the least significant digit, all the low

order bytes of the words for the other digits contain a

46

blank. Improvising for the negative sign on the FMS.2

system is accomplished by setting a bit in the second byte

of the last word of a number. In FMS.2 a character is

stored in the most significant byte with the remaining 4

bytes containing a blank. FMS.2 has an UNPACK and PACK

routine that may be used by the user. The UNPACK routine

takes an A5 word format and repacks it into a five word Al

format. The PACK routine reformats 5 words in Al formats to

a single word with an A5 format. The UNPACK and PACK

routines were used in rewritting two of the routines that

use the 'negative' sign. Some of the routines tested on

FMS.2 use the subroutines MAKNEG, which turns the negative

sign mask on; MAKPOS, which turns the negative sign mask

off; or the logical function ISNEG which determines if the

negative sign mask is on. These three routines have been

expanded in-line to facilitate implementation on FMS.2. To

code the MAKPOS subroutine it is necessary to turn th.

'negative' bit off, this is accomplished by storing a blank

in the second byte of the word containing the negative sign

(call PACK with a blank in the second word which gets placed

in the second byte of the word). MAKNEG is expanded in-line

by calling PACK with the low order bit of the second word

turned on; this word gets packed into the second byte. When

MAKNEG is invoked, the negative sign mask is off. ISNEG is

expanded by calling UNPACK and checking to see if the second

word is blank, not negative, or non-blank, negative.

47

Another dependent feature, the $INSERT command, has

been changed in all the routines to contain COMMON

statements where needed or to insert constants where

parameters were used.

The MOVENM and MOVENW routines are believed to be

correct and the testing was done to increase confidence in

the program's correctness. The two programs are shown in

Figure 3. Mutation analysis on each subroutine indicates

that no errors exist and that the two subroutines are

correct. A listing of each subroutine with its equivalent

mutants and the MUTANT STATE information is given in Figure

4. It can be seen that most of the equivalent mutants a e

the absolute value or the never been zero mutant of a

variable; these variables are always positive and never zero

because they are referring to the memory location and length

for either the sending field or destination field in the

Cobol MOVE statement and this cannot be negative or zero.

One important note to be made concerns the statement:

IF (K .EQ. '#') IER=4

This conditional checks for undefined data. If the data is

undefined, the data is moved entirely to the receiving field

before the interpreter is halted and an error returned to

the calling subroutine. The conditional statement:

IF (IER .NE. 0) GO TO 9999 as in MOVENW

IF (IER .NE. 0) GO TO 50 as in MOVENM

is located after the Fortran DO loop that moves the data; if

48

this statement were moved inside the DO loop, then the error

could cause the error return before all the data is moved.

After further consideration, it was decided that evaluating

the error condition on every iteration is larger than moving

the remaining data to the receiving field. It should be

noted that moving the undefined data to the receiving field

has no effect because interpretation of the program is hal-

ted.

The MOVEED, numeric edited move, subroutine was submit-

ted for mutation analysis because it has not been fully

tested by conventional means. The program as modified for

FMS.2 is in Figure 5.

The data for this subroutine consists of the following

input and input/output data.
INPUT DATA

SOURCE - INTEGER data that contains the starting locatio~n
in memory for the sending field.

SLEN - INTEGER data that specifies the length of the item.
in memory.

SDEC - INTEGER specifing the number of digits in the frac-
tion part of a number. C

DEST - INTEGER data that contains the starting location in
memory for the receiving field.

DLEN - INTEGER data that specifies the length of the
receiving data item in memory.

PLEN - INTEGER that specifies the length of the PICTURE
specification.

PDIG - INTEGER that gives the number of digits in the PIC-
TURE description. C

PDEC - INTEGER specifying the number of digits in the
fraction part of the PICTURE.

LISTING TOEf 'S0SS, U%'3T "wf1V69I 49

1S-4 6UEQOL . SC~U32, S,LD2M01S, 1.14, 5

INTFrq ST"T(3.12). CODEC33). 3S-A4(I1:,9)
C4A9 '1'VyC4?5)
IEXf% tat', OtSI, SL)'i. SJR*Ct
INPUT OJY-JT TER, N!E'ORY
PVOUT OLE'., DEST, SLE'N, SCU4Cf
XLCN * OLEV
11(SLE. LT3. 1ILMN MFLI4 SLEW 2 3

*)0" C!(EST 4 NLEN) -I4

SU22 - SPURCE I S
00 22 SUAI-DEST, VOPM1
SU32 a SUR? * I
x - NEFUDRYCSU32)

* 1(C .12. its) 119 w 4 9 15
20 VEMOPY(5U91) * 11I

IMCER WIE. 11) 1.DTO 9999 12 13
IFEOLEN LF!. 'IL1') SOTO 9999 14 Is
I - L0n)'H1 4 1 Is

L011* (DEIST * 0119) - 1 17
00 30 SURIsI, L03PM! it,

33 FE434vcSU91) IF I?
999? CE'NTMNE :

E4D

LISTING~ TOE P9069494 UNIZT ""0vEN4
SU3ROUTINF NOVE99CSURCE.SLENSDFCEST.LNVE.TY1DE)
LOGICAL NRX%'2
INTEGER 1), PIVEGO, *T'4(CS. C. SU82. SUSI, L30941 L"40
1iIE;ER LENS, 1, 3141, DOECDT. SDECPT, TER, StNT(3,12
INdVESEN C00EM3), SYNTA3CIO,9)
CMAN q1El109yt625)
INTEGER TY&PE. DOEC. OLEN, DEST, SO'CC. SLE'4, S3U~tC
INPUT OUTPJT TER, RI'VORY
IN-UT TVOPF, OPEC. OLEk, OFST, SOIC, SLEN, S)JqCE
FT'4ESS * C3OuPCE * SLEN) - 1 23
PTNdEGC a (DEST # OLEN) - 1 24
CALL UN'ACC'vEv1RYPT~ES).X.5) ?S

WEN XC? .12. ?6 2

IM? 6 27
IO(WES40) CALL PACXCX,01e10RYCPTNEES),5) 28 29
LENS & SLE'4 - $DEC
LEND a ODIN - DEC 31
S5EC~f & SOUPCE # LENS 3?
OOFCPI 0 DEST LE40 33
SUBI a 0011'? I I1 4
XF(SVEC Ea2. 0 OR9. ODIC .12. 0) S510 22 35 36
141 a (SOEC + SbICpy) *1 3?
MEODEC .Lf. SlEC) 1141 I ODFC *SPrCCT) I I? 3
btO 20 5U92%SDVCI, 19414
SURI a SU01 90 1 &1
K - 1E!OPVCSJ92) '2
I1cC .E2. 101) 119 a 6 43 44

20 VVqRY(SUBI) w x 45
11(11 .941. 0) 6e'T0 50 48 47

22 MEODEC .Lt. SOIC) SOTO 3,1 '. 49

1041 a (DEST * OLEN) - 1 51
go ?5 SUB101. 194 52

25 11SOORTCSUPI) a '3' 5%

IF(11945 At. LEND') LOOP'42 LENS S5 56
S31 DOCa 0019

gy SPECIP?5
IVILEMP .12. 0) SOTO 53 59 611
11(3194 to. 0) 1010 40 61 6k2
go 40 1.1, LOOP9I 63
SUIT a gull -64
SM? a Sun? 65
9 a "ES@#?(Su92) 66
11(t .93. of') TER a 4 07 6b

43 901 C5(USI) a c 69
Mi(11 ."f. 3) SOT0 St ?I 7
IMCMI AtI. LENS) SOTO So 72 73

41 1"? 0 SURI - 1 79
Do 45 IwOES?, 3M! 75

4S ptq~ovtj) as eel0
so K(21 w 0- ?T

I1(WIStID) CALL "ACMC,"E41OMPIVIGS),51 71 7 9
Ic.q01. CNESNO .410. 17011 .12. M) aIVVIN 83 SI

CALL 0WAI9E01Ph5)I5 2

CALL *AK3NCDYS146)S
M1URN Is

IND

Figure 3 MOVENW and MOVENM Original Program Listings

50

LISTIS 14f BQOCRA" UNIT 'NOV!'id WITH SPECIFIED E3JIV "JTANTS

14dTFGEP S1'1(3,13). cCtEC30), ST11TA3(1t09)

INTCEE OLEN, DEST, SLE'4, SOURCE

11'4UT O&ATPJT RB, PEI4O*Y
I'42UT PLEJ, 01ST, SLEt, SOURCE

1755S IvLf% - ABS OLENJ
S75751 PLEN - ZPUS-4 DLEN

1F(SLF% .LT. 01LEN) 1LIN - SLFN 2

24.3S 1PCSLFN *LT. OLEN) OLEN 8 SLE4
9632$ IF(-- SLE4 .LT. q4LEN) RLENj - SLI
S5321 IF(SLEV .LT. * 1RLE.1 GIL[% a SLfN
S7271 X!(SLEk LF. "LEN) 1VV - SLEN
S?5?% ICLO3S SLF% .LT. "LIN) 4Lr'd 8 SLE'd
S7611 IF(ZPUS4 SLEN .LT. RLE

t
4) RLE~4 a SLS4

57611 11(SLEN .LT. ASS MLIN) RLEN & SLFN
1765!% IF(SLFN .LT. 2'US4 VI.!') OLEN a 3F
S764S IF(SLFN .LT. qLE'4) ILF4 a ABS SLE4
%7tSS IFESLEN .LT. qLE4U MLrc - z'js4 SLEN

LOOPHI - (DEST * QLEN) - I

S767S LOOPIII - (ABS DEST + 9PLEN) - I
$76 S LI .41 - (?PUSH4 0111 + OLEN) - I
177)1 L33PHI - (DEST * A35,0LEV) -I

1772% LI:IPH1 - (DEST * ZPJSYN 4LFN) -
1773 L03PHI 9 A3S (DEST * PLEV) - 1
57?19 L))3I'I - ZPUS4 (01ST * MILER) - 1
17761 L23201 - All ((DEST 4 11LEN) - 1)
677F1 L'1)0H1 - ZOUS14 ((V'EST * MLEN) - 1)

SJ42 - SO'URCE - I

%???I SJT2 - 4P5 SDUICE - I
67"iS SJ42 -ZP1ISI4 S3URCE -I
1702t SJ12 - AS (SDJRCE 1)
67$61 sui2 -ZPUS14 (SOUBCE - 1)

00 20 SUSI-OfST, LOOPHI6

$?!St D0$ 20 SUq1-SS DEST, LOOPHI
17871 03 23 SURI-ZPbLS'i DSKT, L22PNI
97SRS 00 23 SUDI-OEST, ASS LOOP1
1700S OLN 20 SUPI-DEST, ZPUSM LOOP141
$1721 FOR 20 SU91xOES7, LOOPMR

SU32 - SUS?2

$791S SUR? - ASS S.192 * 1
979!9 SUS2 a ZPUSH SUS? 4 1
S7941 SU32 x ASS (SuB? * 1)
$7961 SU3? a ZPUSM (SUB? * 1)

K a "EFORY(SU11?)

17971 9 2 "(141RYMAS SUS?)
17991 1 IN 111tORyCZPUS4 SUM?

11(1 .E2. let) left a 1. 9 10

$554s lr(qEq)BV(SUP?) ED0. off) left 4
6'001 MASS3 c .12. IV') UPf a 4 1
18325 IF(ZVUS4 K to9. #No) III a 4

20 5P16OB1(SUPI) aK 11

15391 NEWORY(IUBI) RF143RY(SUS2)
11633S 1 PEORI(AS SUL41) a c
16351 PEROQT(?PUSH S1011) 0 r
stop% PEfoBBl(5ugi) a f*US4 c

11(111 At. 2) 6015 9999 12 13
11745S IMFI .GT. 3) 6012 9999

1A'B 1(111 .#EE. 3) *FTU*N

Figure 4 MOVENW and MOVENM Listings With Equivalent
Mutants and Mutant State Information

* 51

* ~~IF(i'LF- .LF. OLEN) SV1E 9999 I.1

%2512 Zf(LLEV .LE. SLIA0 6OT5 999

3sO'S wFaas rLFd .tp. WLr,) .*)To 999
%flit~ IM()US4 DLE': .Lf. qLS) 6-1. ;999
58126]FtOLfN .Lt. 4115 %LEN) 1010 99V9
&I'&S IF(OLfk .Lr. IVUS4 '4LU C-011 9990
5874% IF(DLC% *Lt. qLnm RFIVOW

I - L('OPt-l 1 1

$815S 1 8AYS L0Co.~i # I
zFt?? I a IOuU L200141 + 1
S-I!s I - A'S (Vk0PI # 1)
$6211 1 0 I2U&#A (L00Ot4I 4 1)

L53F41 e (DEST * DLIV) - 1 1?
15211 topq v sDS-- 4

S523S LODPi.I a (ZPUSM DEST * OLEN) - I
13?41 L03PHI a (DEST 0 A*$ OLEN) - I

55 L02PRI 9 (DEST # Z*11514 OLEN) - I
s827s LOD54I w A3S (DEST * 0A.EV) - I

W925 LlIP141 x IOUS4 (DEST * OLEN) I
6.331 LOOP41 xARS ((DESt 4 92814) *1)

S9325 WDPHI a ZPUSM ((DEST * OLEN) - 1)

03 33 51191.1, L0OP4I1 Is

5833S 00 33 SUPI-ABS 1. LOOP4I?
SE35% DO 33 SUBI.IPUSIA 1, 101041
SE365 03 3fl 51191=, Ass LOOP.41
?33 00 33 SU~it., ZVUS4 2009141

191%0 9099 Su91SI, L00
0
141

$1*75S tOP 30 SURiI, LOOPHI

33 ' qDRY(SUqI) =19

5841S ME"DOMPUSN SUSI) I

9999 COITIUE P

83? REfURV

PrTJRV 21
FVD

OUTANT STATE FOR IqDViqiW

FOR EYDERIqENT P40VEWiO ThIS is RUN 7

'IUMPER or TEST CASES a 11

56111198 of 1111151 a 393
WU41BE4 Of DEAD NIJTAVTS a P21 P 1.99)
fW'J~fq 0f LIVE *UIAIS a 0 C0.0%)
NUIER OF ESUIV 1NUTANTS * 72 8 .19)

NUMBER98 OF W6JANTS W104 DIED SY NOW STANDARD PEAV#S 313
NIR"ALIZEO 11111*11 RATIO WAY.0
NJ11SE Of 11U&1 %LI IAIMS l 21
GJVZNG A OUTATS/STAIEENT RATIO 0f 42.5?

VURPFQ 0f DATA REFERENCE$ s 4B
MU42ER1 of UflISUt g& a SItitfucts 14

ALL OVTARY TYPES NIAV(MENk IAILED

Figure 4 cont.

52

LIST14S 14F F 21aAw U.IT "OOVFV WTN SPEC J F If3 (2J1V PUT A T S

SJ4RDJTj.f 'VE 'q(SOUPCE .SLEN.SO&CtDtSIDLF%,DDEC.1 YPr)
LDSICAL 0.'E-.Ndo

INTEGER TYPDE, ODIC, OLEN, DEST, SOIC, SLI.t, S3J~tCF
1Y*UT OUTPUTY IER. -ENCBY
INIUT TYPPC, (IDEC, OLEN, DESIT, SOF, SLEW, SOUICE
PT4ES * CSOUPCE + SLEV) - 1 2

14W%1 WTNEGS - (A4S SOURCE # SLFN) - I
S4652% DYNESS a (ZFJSM SOURCE * SLEN) - I
S4653S FT'dESS - (SOURCE # ASS SLEW) - I
S4655S PTEGS a (SOURCE 6 ZPUS4 SLE'J) - i
s4656s PTkiEGS sASS (SDURCF 4 SLEN9) - I
s465ps 914Ess - zpj3s4 (souRcr 4 SLE'4)-
1465.1 *T4EGS N 49S ((SOJURCF + SLE4) -1

14661S PTESS 0 ZPUSIA ((SOU&CE * SLF-))-1

PIWESD (DEST # SLIN) - 1 2

$46621 DT4ECO s (AS DIEST 4 O'LEN) - 1
14664% PT4FZO(9 (TPUS4 ('P57 + OLEN) - I
14665S PTIEGL' - (DEST + ASS O'LEN) - 1
54667S PTNEGD a(DFST + ZPUSH OLE'd) - I
S466ft PTqiEGD 0 A9S (bEST 4 OLEN.) - I
$4670, PT4FG' a ZPUSI1 (tOEST # OLIN.) - 1
146711 D1'dEGD - ASS ((ES? 4 OLI'.) - 1)
146731 P1'iF6b - ZPUS4 ((EST 4 OLE%4) - 11

CALL UMPAC'r(%E-0R?(PTtsEGS),X,5) 25

146741 CALL U'PACK(qE"ORY(APS PTNISS),X,S)

14f66 CALL UMPACK(ERORY(ZPUS4 PTFGS),VS)

£45451 tj(?dO X (2) .2E. -

11.577% 'OESNO *ASS K(2) E.19
%46793 14ESNO VUS4 1(2 JE2.

1(2 v * 27
MEG-10.N) CALL PACC(X,'E!IR?(PTW[CS),5) ?rs 2

14W6r% IE(VEGNO) CALL PACK(X,4E'ORV(A9S PTVEGS),S)

S46921 IF(NEIID) CALL PACK(X~qEMORy(Z'US4 01'%E;S),5)

LEIS =SLE'J - W0C3

546t3S LENS =APS SLE% - SOrE
146655 LENS 1 PUS4 SLEN - SOEC
£46161 LENS *SLEN - A3SS It'C
14 6P91 LE14S *A'RS (SLF4 - SPEC)

LEND 9 LEN - ODIC 31

$4692S LENS * ASS SLEN - SPC
14694S LIND a ZPUS4 OLEN - DOCC
£4695S LEND a OLEN - A3S ODIC
6469132 LEND S ASS (OLENW *DE5C)

SCECO1 So3UsRf 0 LES 32

14701£ SOECOT a ASS SOURCE # LENS

14733S SDECOT w ZPUSW SOMRE # LENS
54734£ Soltu? a SOURCE 0 ASS LINS
$47075 SOECR m ASS (SURCE # LENS)
£47091 551CP? a 2PUSM (SOURCE # LENS)

OECRI w DEST 4 LENS 33

£47101 DODEET a ASS DST 0 LEND
£4712 056CR? a ZPUS4 DES? 0 MINS
34713£ O56CP? a DEST 4 ADS LEND
54716£ DOECRY a 4SS (DEST 4 LEND)
£471.1 051CR? a ZPUS4 (DSTS 4 LENS)

ligure 4 cant.

* 53

SU91 OB bIafcbl ,

607111 sual a ZPUS4 *Di(l. - 1
1022% sull a ons ('l1Cpy I)
147241 SUll a ZPUS.4 (OD(COO - 1)

1431 iSDEC E21. v .02. OE ..) GjtD 22 53

14$571 Jr(SDrC *EQ. a1 D&. tDFC .Lf. D) r9fT- 2,>

141 *(SPEC * SOECC') - 1I

S4?252 1141 (APS SPEC # SOFCO?) - 1
1W271 1.01 *(IPJS4 SPEC # SPECOT) -I
I4??t1 till a ($DEC + isS SDEC7T) - I
607339 141 a (SPEC # ZPU54 SDECOT) - 1
I47IIS 1141 a Aps (SOEC 0, SPEC27) - 1
%47335 1141 a IOUs"I (SDEC 4 Sb0C') - I
147341 141 a APlS ((SOt # SDECO?) - 1)
90?36S 1.41 a ZPUStI ((1011 * SDECPT) -1)

*U(DDEC ALE. $DEC) 1041 a (OPEC + SOECPT) - 1 36 39

$43331 11(44 Or .L(. SOEC) 1141 a (OPEC 4 SDECPI) i
W6S3s IF(DDEC .LT. so11 Jut * me:C + SOECOT) -I
147371 IFCAIS OPEC .LE. WPC) loft m (OPEC # SDECOT) *1
$4.739S IF(i'USM OPEC .LE. SPEC) IN1 9 (OPEC 4 PFC3?) -
%474-'$ 1F(DC *LE. ABS ICOd *11 a (OPEC 4 SPECDT) - I
$4?4?s MbbIsEC AE. ZPUSf SPEC) Sill a CtOCC # SOEC'?) - 7
4&LLS 1I(00FC LE.. W0C) 11 a (AM OPEC + SPDECO?) - I
547451 CODEC ALE. SPEC) 1141 a (ZPUS4 OPEC 4 SPEC'?T) -I
S1465 IF(ODEC .31. SPEC) 1141 a (OPEC + AIS SOECOT) - I
547451 lr(ooEC *Lf. SPEC) 144* m (DOFC + IFUSH SDEC'?) I

*4 '31

DO 23 SU32-SDECC', 1141 4.2

147551 DO V2 SU92SS S('EC'T. 7141
&1571 01' 20 SUAdSZ'US4 SD(T 1141
1475FS 00 20 SUPOSSIECD7, AOS 147
S47611 00 ?3 SUR?*StICC'T. ZPUS4 141
$53921 FOR 23 SUP?=-SDECPT, 1141

SURl *UB +ul 1 41

947619 SU1I A;S SU91 + 1
147631 SUI Z PUS SU~i + I
14764% SUI APlS (SU~i + 1)
14?665 S.31 ZPUSH (lUSI # 1)

K * 'ICAI*V(5U32) 4?

SAWS7 V 5 ACWORY(APS SUR?)
1476;1 V 0 44FOR(*PUS4 $US?)

If((.Ea. IV) IER * 1 43 44

1224?1 *1(K EQ0. $0l) IEC O LEW
1221441 11(1 EQ. ON') I* LE4S
SZ245S 11(K .EQ. oil) 115 $DSEC
9224?9 *1(K .10. *NO) *15 0 OPEC
134S71 ZF11fKPORV(SU!12) .EQ. 000) SEP a 4
11.7701 WASS8 K ECQ. If#) JES a A
60772S IM(ZuSu c Ea. I#,) MI a 4

I22 N911Osv(Sul) a itA
S3069 P!Softy(sugi) a opEmS(sue2)
547731 4IF*5v(pe5 SUSi)a
9477S 441134MP51 SUMI m K
947769 41C1134MU51) 40AS K
547751 qE4051(SUp1) I PUSN C

H(11R .*Wj. 1) 5010 so 46 47

$45811 11(11 .61. 0)::Or: $0

Figure 4 conlt.

54

2z lf~bbfE .Lt. SOE) 6010 30 AT49

$47791 MIARS OPEC *Lt. SOEC 60T0 3C
147329 IFCDDfr .LE. AIS SOEC) G070 3fl

I SUBI + 5

S107851 3 a Ads IL0S? + I
6471"1 1 It IOJS4 S)1111 '

6475 s 1 = a9S (SJi # 1)
St.7931 I - IO

4Js" cSU31 4 1)

totI (DEST * DLEN) 51

$47710 141 6 (APR. OFST + DIEN) - 1
54793S 14') v (70J5H VEST # OLMN - I
£4?*41 141 *(DEST 4 ADS OLEN) - i
55798f1 LII1 (DEST # ZPUS4 OLEN) - I
547?7S Iqi ASS (DEST # OLEN) - I

-(I33 49 *AS ((DEST E41I) I
540324 IND * Z9USN M(EST K IEN) -1)

Do0 25 &UPI-., Tiff

91186 PC, ?S SU31:2, PTNE6D

56538.s 03 25 SUDS.!,s Z1U IN!

15373t 01 3.) SUI-, 1142
950931 FnR f?5 SU,1Iw. 1

84699 %Eq3Rf(ARS SUll) - I','

549111 %f"O3(CPUSN sual) - 1.30

so LWN041 a LEIGO5

$431Z& L)30141 a 1.0 LEND

ft(LED .LT. LEND0) LPC.@HI LEIS 55 56

sl?!I5 IM(EKS .Lf. LOOPWI) LOCP4X LE04
S5595 M4(4 LfNS .1f. LEND0) LOOHI *LFVS
11591t IF(LEMS LT1. LE451 L00241 It LENS
54315 IF(ORS LEIS .Lf. LENDO) LOOP41 a LEN$
14019% 17(1(. .Lf. A)S LEND) LrOON a LFk'S
%4!?tS MELENS .LE. LEND) Lf%0041 v ADS LENS

Su11 a DbE.10T 57

S411241 S'JOI 0 Aes DOCT

SU32 a SOW, SS

548271 SJY2 AOS5 SOFCOT
54291 Sip? I 2545 SDECPT

JECLEND .12. W) S0T0 50 59 43

123391 11 (LEV5 .). IMt :01 3 53
54599% 27(1(0 .Lt. 01 66T' 0 S

M(IENS f12. 0) g070 41 61 62

51443S TEILOO943 .12. o) 6ot0 41
646D6$ ILENS .16. 0) Soto 41

SO 40 loll LOOPH1 63

114401 DO 40 SOUES, 100544?
114471 00 43 51.11.1, 120P141
M1531 40 41 W051, LOONE4

014551 00 40 DDE1(31, 4.000,4
6145wS610 40 SOCCPlol, LOOPotl
S14579 00 43 DODEES0m 100514?
5145911 02 43 1441.1. 1005441
5146111 60 40 %bl, LOOP41
S1463S 02 v.3 LOOedlel, 1005141

Figure 4const.

55

SU31 a SURI - 16

S 6?331 S~JT *AmSs ltl -

w*r ,~~ S JI =a ZPS4 SU9; 1
60312 5.11 MEA! (S0~1 1)
141311 Si"t ZPtJSH (SUSI - 1)

Sjq2 is SUQ? - 1 65

%48191 5.19? ARS SU%? - 1

:4;41S. 5.1? =ZPJSI4 SUP2.-
14 421 SiD 2 ASS (Si! .2)

$4544% SJ9? ZP'jSH (SUB? -)

9 a I0OA(SU32) 6'

14345% c qfq53I(A9S SUM2
14'471 C U NFqORY(2PUS4 SU9?)

IF(IC .E2. 01) ItR a A. 6F

%36?5s 1icqf%2pY(Suq?) .12. so*) III 4

$4;49% 11(ZPuSI FK .1.'I)IC

40 PE!OlVL(SU91) 9 69

t3fu'is 'IMRYCSUgi) u REVORYCSUMZ

S 4S51: *:Sw1UI(APSSSUBI)j t
141153 k ' R(ZPUSH SU9t a r
148561 VIERORY(SU51) a IPUSII (

ICER .11E. 0) GITO so 7fl ?1

SAW23 IM(1C *GT. M) GOTO 5Z

S505.1% !IMEP *P . 0) SOTO 2rS

M1LfPN0 AE. LENS) GOTe. 5: T2 73

W143% 1F(LEND .LE. LOOPMI) 6070 53
9455F$ 11(A3S LENJD .LE. LFVS) SOTO 5.1
S4?5;1 JPUS4 LF14D .LE. LF'%S) Ctl 50
$4831 1F(LE40 LE. AIS LENS) 6070 5)
S4662% IF(LWtD .LE. ZPUSI LENS) 6070 S0

41 141 SURI - 1 74

205U3% 141 *ASS SUI -I
94.865S 141 IOZUSIE SU31 - i
14166 141 *ABS (SU31 - 1)
14PSOS141! ZPUSN (SUBl - 1)

Do 45 InCEST, toll 75

14869% 00 4S I.A3S DEST, lI
14.871 0') 45 ZZUSM DIV~, 141
SAM7S 00 45 IIIESI, A95 INI
948741 00 45 IUDEST, ZPUSH IN!
ISMS1 00 50 1-01ST, 141
SS'95S FOR 4S 1.01S7. ZN!

45 WEVIORY(1) a 10, 76

649M1 RI0IMPUS04 1) a '06

so X(?M - 7?
!U(tIFGN* CALL PACM1I (PTNESS),S) ?6 79

14AM8 RF(NESNJO) CALL PACM,(1,EROftY(S PTNCGS),5)
S49101 13(41BN0) CALL PACK(X,4OAR0V(PUSff PINEGS).S)

IF(.N07. (NM13 .AND. IPPE .13. 2)) RETURN P0 St

149811 MP.4O?. (C942N .4100. ASS IYPPE .18. M) OfTUI

148838 IF(.NOI. (4[S40 ANRD. 2PUSPI ?TOP[AS1. 2)) RIT~S!N

CALL UPAC9("FR0IY(PTWFSD),X,S) 8

1571 CALL UWPACK(I1I0*Y(PTMESS),3.4)
125101 CALL UIPACC~fII0fV(PIt*S),I,SDIE)
125721 CALL UPAC(ql!IO*(PTIGDI),,TYPPf)
190151 CALL WNAC(1EUORYPINESS)P1.1)
130161 CALL UPACC(IIE!O*Y(PN18D),I.?l
11834S CALL UNPACC(IIq@*,(ASI PTIME66).R.S)
14661 CALL U4PACX(I1%*IY(IPV1N PUII*)*t,S)

* Figure 4 cant.

56

93

%29%1(71) S

CALL PACrCI.AE*OAI(PTFGD).5) E

%49SS CALL PkCKEK, RO**YATIA Pl~fSt),S)
11.8891 CALL PACKCK,NERORYI(PUS4 PTNEFGO),5)

RETURN A
EN

4UTGYT ELI1ATI01 PPOFILE FOR 40vFNNI

4UTA'JT TYPE TOTAL DEAD .EEJI

CONSTA4T REPLACEMENT 64. 63 9S.4ir 3 0.3x I 1.A..
SCALAR VARIA91LE REOLACEME 1920 193. 99.3y 3 3.7 11. '*7?t
SCALAR RO; CONSTANT REP. 63C 622 01t.72 3 3.3% 9 1.3'
C0~4STANT FOR SCALAR REP. 531 31 i3n).o% 3 3.3% 3.)
SOURCE CON~STANdT RFPLACE14E 10? 100 96.0y 3 0.3% 2 2.0%
ARRAY REf. FOR CO'NSIA41 R 179 179 100.02 3 0.0% 3 1.37
ARRAY REF. FOR SCALAR REP 5SA? 51.3 99.32 3 .3% 1. 0.??
CORtDAQAPIf ARRAY WRE RE AD 0 130.32 3 3.)% 3 D.*I*
CONSTA47 FOR ARRAY REF RE 40 1.0 100.02 3 D.flt 0 0.2?
SCALAR FOR ARRAY REV REP. 315 315 100.3? 3 n.1%? .1 0.31'
ARRAY REF. FOR ARRAY 9EF. 7S 75 130.3t 3 3.3% 3 3.311
UNARY OPERATOR INSERTION 141 159 99.32 3 3. 71 2 1.2).
ARITHMSETIC OPERATI)P REPLA 107 107 itfl.0E 3 0.n% 3 O0df
RELAIONAL OPERATDR REPLA 9? 89 90.9t 3 0.3% 9 9.2y
LOZICAL CONNECCTOR REPLACE 13 13 133.3?t 3 3.3% 3 13%
A9SOLUTE VALUE INSERTIONd 21.3 93 3R.9% 3 3.1,% 11.7 5.
STATERE41 AN4ALYSIS 29 29 too.02 3 0.'? 3 0.0 '
STATE~I~ D1E4TELETTOMJ 35 35 1 3.01 1 1.3% 3 32.'/
RETtJQ4 STAtERE4T REPLACERI 61 61 133.o? 3 3.21 3).It
'.013 STATEMENT REPLACE"F4 1.9 1.7 95.9% 0.3). 2 1..1%)
DO STATEMENT END REPLACEM 32 25 75.1? 3 0.lz 7 21.;%)

RUTAVJT STATE FOR MOVE%4

FOR EAPERIIEN7 "RDVEtdR 741 T is RJN 22

NUIRSER Of TEST CASES 0 41

NU41BER OF 'lUTANTS a 5095
NUIROER Of DEAD 14UTANAIS a 4!599 (96.2%)
NU#44ER Of LIVE NJT4'dTS - a 0.0%)
NUNRPER OF EQUJV 14UTANTS a 196 C3.9%)

NUMAPER Of RNUIANTS WHICH DIED BY NOR STAtIPARD MEANS 22(-6
NORMALIZED MUTANT RATIO **&**I

p URRER Of 4UTATA LE ST ATERENpl 1S* 3
GIV146 A ItUIANT'SSATEREH1T Ift 1oF 80.p7

%UPPER OF DATA REFERENCES IS1O
NUMBER Of U4IaUE DATA GUMIRECES * 32

AU.L %UIA'4 TYPES NAVE OffEN ENABLED

Figure 4 cont.

57

* LISYIIJS VAE PROaulkv U417 "qOVIED

SJ9ROJTINdC q3V5ED(0URCE,5LE4,SbfC,PFS?,0LFN,.!V,D1 phEr f
*PICIEq)

LO!1CAL supars, NIGNo
11EfCi 10), SUB?, SUait 1141. PLOIC, IVAFR, 1, S~fl'UNT, DEST41
ITEGER CHAR, POIGL4d. SbXC, SAVRAY(S3), 'ICSI, D)Er
IK1rGEP STI'70,10), CODECIO), STMTAD?(10,9)
CHAR qFqD'ey(3I3)
INT'EGER R

INTEGER POEC PO1G. PLEM, OLEN, DEST, SPEC, SLTI, SOURCE
1'd'U1 OUTPUT RF'43PY, IER
ILIT) DIC, PDEC, P01G. "LE4, OLEN, DEST, SDC:, SLEr%, S'Jq:[

SUDRES - .TRUF.
00 5 lei, OLEN

5 SARRAYCI) - 10,
PLO!1 PD16 - POEC 9

SPG SLE% - SOEC
IU(SDEC .12. 0) SOTO 11 4;
SU31 - PLPIG
SU3? a (SOJRCE + SoIs) - I1;

DO 13 191, WC 9EC
SU31 - SL'E1 * 1 01
SJ12 M.sue? * 1
IFNEORflsjI?) .19. It,) lEA s A vc 11.

13 SARRAY(SU91) S FM0RYCS92) 11I
IMCER NXE. 0) 9010 101 1:2 If.3

11 IF (SO16 GE1. POIG) INIIa PLIG 115
IF(SDIS .L0. PLDIG) 1IN1 S 3015 1-? Ifs
SUBI & PLV"IG * 1 .
su~z a souPCE + SDIG '
Do 15 181, 11
SJ~t - SUSI - I 1

SU% SuG? - I 1
IFCwSVORYCSU32) *Ea. #I) ICR A 1 114 115

1s S40RAY(SUP1) I, %Vtw3RYSU9?) III
IER .NE. '3) 2370 101 11? 174

is SURI - (Sn9IPCS * SLE'S) 1 i
CALL UN'ACC('CNORYCSUP1).,0) 12?
NE;49 - XC?) .Ea. ill12
SUI - DEST 1.'?
SCCUNT - 0 1?3
03 1M I-1, PLEN 1?'.
SUSI - DEST + I IZ5
IF(DESI * 1) - I .G1. (OLENd 0 DEST) M) 63TD 126 Z?
CHAR a PlC Cl 1 ?,
XF(PIC(1) Efl. 19') SU04ES a .FALSF. 12^ 130I
IMASRRAT(SCOU41 * 1) .4f. '0') SU'RES 6 .FA..SE. 131 13?
IFCNAR NE4. I-') 6010 20 133 134
XREVORYCSUBI - 1) a I' 135
IMC .Ea. I .AND. NEGNO) V4EORYCSUI - 1) 136 13?
IMC *Ea. 1) 63T0 100 13S 139
$COUNT a Scoull? # 1 140
MF.td07. SJPRES) COT0 99 1114IA
IF (NEGNO) qfqORIESuRl - 1) a 1-1 143 144
IFCNEWOftICSU91 - 2) .EQ. 0-1) 4EMOgYcSU91 2) 14 1 * s i
COTO 103 147

20 IFCCMAR .wr. w4) 601O 3o 14% W;~
IM .Ea. I .AID. VE1M4) 41WOftv(SUll 1) S 152 151
IM .E2. 1 AND4. *140. v41614) MNqORY(SUSI -1) v 8#6 152 153

IMC .12. 1) 6010 100 154 155
$COUNT 0 SCOUNT + 1 15C6
MF.40T. SUPRES) C010 99 IS7 ISE
If (WE1614) 411R1(SUL1I - 1) * s 15 16,
If (.1401. NEW14) 01EVORM(UDI 1) *# '* 61 if;
IFC(qE*ORY(SU1I -2) .10. 4+0) Po~qnR'vSU91 -2) M E 164
1F1NEqORT(5Uv1 2) .63. 0-0) 1114toe(sual 2) 16 s$
6010 13 1

30 IF(C"AR ME4. !S') 6010O 40 If167
IF (I EQ9. 1) qjqoWV(SUul . 1) iti17 171
SF11 .12. 1) SOTO 130 11 173
SCIUMT a SCOUN? * 117
111.140T. SUPRES) COTO Op7517
qrq)gycsupi - 1) a i ITS 17?
11114141CSU11 - 2) ITT*0 E0u~u1-2 ***, 7
S010 130f.#o fo*C~i 2 1?0

Figure 5 MOVEED Original Program Listing

58

t.0 IF(Cb4Aq NE. '.') 6010 SO III 1'?
SC)UYT $ CO.UNT 4 1 11'
I(.403T. SUPRES) SOT0 90 194 1

FAE
5 0RV(SUS1 - 5 .)

GI1TO 100 I
5D IFIENAS *Nt. 'Z') SOTO 55

SCJUNM SCOUNT * I ~
IFC.KOT. SUPRFS) S0TO 90 ICI I??
WPEWORT(SUB1 - 1) w 1t3
G3TO ITO 174

55 IF(CMAR .ME. '9') 6010 63 ~~ 1;5
SCOUNT - SCOUNT * I i'
!ORY(SUSI - 1) = SARRAY(SCUNT) 1 ?f
G310 1032 1

63 IF(C4 .AE. '5') S0T0 13 ?') 1
PEIOAVESUBI - 1) - ?2
C.'TO 102 -,

70 HF(COAR .NE. 0I') 6070 6i 4 2'5.
WEvORT(SUB1 - 1) - '11'2

PD 1P(C'4D .Mr. 'VI) SOTO SI 2"
S0TO 1,10 211

al IF(C4AR .ME. 0.6) SOTO 52 211 21?
90"ORYCSUa1 - 1) *. 211
S0TO 133 214

P2 IF(C'4R .RE. ',) 6010 43 ?15 216
JF(.40T. SUPosS) RE.POPI(SUP1 i) a , 217 21;
JECSUPRES) lEwORv(SUBI a) 21; 2?1
.070 13322

83 1fR S 3 722
SOT0 101 223

99 wfE)RY(Supl - 1 a SARRAYCICOUNI) 224
122 CONTINUE
121 02MIINJE2?

RETURN 227

Figure 5 cont.

i Si CASE NMBE9R 9
DARAwrimR 0d iNPUy
SOURCE a 294
SLE'J - ?
SDEC - 7
DESI - 5
OLEN = 8
PLEN
PbIG 7

Pic w 'ZZZZ9.9906"
ICR a32
PEROPY * qUii~OggiIe9@U902101- UJUUU
04 zz2ZZZzz? DS 13- 235?*7 22

& 9,999.9 99190199 99q0977 E?1

I ARAWfTFRS ONe OUTPUT
[IYa "890 3.601'IS3#~I 1301 Uaj

*A ?iz?221z 23z 13- 25578? 722?
*.99 4**#, $#$$I S***.I

*9,979.9 99/99/9? 99109*99 sKixXil

1(A a 0

Figure 6 MOVEED Teat Case that Uncovered an Error

59

PIC - CHARACTER array which contains the Cobol PICTURE for
the edited move.

INPUT/OUTPUT DATA

MEMORY - CHARACTER data that contains the programs memory.

IER - INTEGER used as error indicator.

The numeric edited move takes data from a source field

and places it in a receiving field according to what may be

called a template or instructions specified in the Cobol

PICTURE.

Through the course of mutation analysis two errors and

redundant conditional statements were found in MOVEED. The

first error detected involved a Fortran DO loop where the DO

loop was being executed once when it should not be executed

at all. The specific statement is:

DO 15 I=l,IHI

at line 111 in Figure 5 where IHI has been assigned the

value of SDIG (number of digits in the whole part of a num-

ber) or PLDIG (number of allowable digits in the whole part

of the PICTURE description). The test data that uncovered

this error is shown in Figure 6.

The program was corrected and the affected lines for

the new program are shown in Figure 7. The new line is the

line with the Fortran statement label 11.

The second error that was uncovered by mutation

analysis involved the handling of the PICTURE item 'V' which

means that a decimal point is not placed in the receiving

60

11 IF(S51G .E3. 3 *OR. PLO1S *E2. 3) ;OTO 16 1-34 105

1141 - OLD~lr 17 1OM
JF(SDl. .LT. PLOIG) 1141 * SDIG -
S-J31 - PLD!. * 1 113

SU2 SOURCE + SIIIG I113
tDO 15 101. 1141 112
Stw~ - SUBi - 1 112
SU32 - SU92 - 1 113 i
XF(4E'IORYCSUP2) .EG. 'igs) ZER *I.115

is SARRAY(SU91) - VEMOCRY(SUP2)11

Figure 7 Corrected Program Section of MOVEED

TEST CASE NJ"BEQ I
*ARA4ETERS 3'4 INIPUT
SCJRCE M, 294
SLE4I - 9
SDEC - I.
qEST 2 5
DLE'd = 7

PDIG - 7
PDEC - 3
PIC - 1
IFR - 0
MEMORY x, IaU M*IAU#A~#a 1.1131- Uj'JJU

:A zzzzzzzzzt as13 235?7? 77ZZ

*9,799.? 19999~ XXXAXXXX
*1xxxxxxxxx~ YTYYYYYYTY37i.321320'A9COEELSEI F2E.SEi 2021 D3 E I#Uu*N-4# OfM

*bg1wuM'ARIEUPUA#AII OLIUJUUAZZZZZZZZZZ 22))1)% 357#

PAQAEtTCiS 04 OUTPUT
E4R : '9912467U WIR INSe '13111- IUJJUJ
*A ZZZZZZZZZZ 25 12- 23375

*44** 13S4S537 VZ

*9,999.9 09/9;/Q; x999 fIExxxrx

*MU@Mqeg ...IUI9#IWUAIUMWRUJJUUAZZZzzzzzzl)531)1245 '

THlE PR3GRA4 TOOK 1593 STEPS TO !XECUTE

Figure 8 MOVEED Test Case thet Uncovered Second Error

61

field. This error was detected from the data shown in

Figure 8. As can be seen from the program in Figure 5, at

statement label 80, if a V is the item in the picture, then

nothing is done and control goes back to the top of the loop

where the next item in the PICTURE description is retrieved.

The error occurs because the pointer (variable SUB1) for the

next available location in the receiving field is

automatically incremented at the beginning of the loop; to

correct this error subtract 1 from SUB1 when a V instruction

is detected. The original method for calculating the next

available location used the DO loop index and the absolute

location of the destination field. This disregards the

statement SUBl=SUB-l executed when a 'V' is encountered,

making it mandatory to rewrite the handling of the destina-

tion pointer. The new code is given in Figure 9. It has

been indicated that some conditional statements were redun-

dant in the original program. These have been rewritten as

can be seen in Figure 9 also. Figure 5 contains the program

with the 'V' error and with the redundant statements. It

can be seen from this listing that several redundant con-

ditional statements have no effect on the result of the

* program. These redundant statements have been taken out or

rewritten as can be seen by looking at Figure 9.

Specifically, a redundant conditional statement exists for

statement 106 where IHI is assigned the value of PLDIG if

SDIG is greater than or equal to PLDIG;

1

62

LISTIN3 THE PROGRAM UNIT? N2OEED

*PIC*IEE)

1011thL Sua 41 S 'ESN vR 1 ZJ2,DS4
1INlESER X(S), S.92, SUPI, 3141, PLOT.IVR 1 rJ'T,05
INiTESER (MAR,. * 01!LN, SOTS, SAPRAWKIN). PjCSl, b5EC

C41IR MR6F.YC3i2))
INTEGER TER
CHAR DIC(13)
INTEGFR PDEC, -DIG, PLEA, OLEN, DEST, SOEC, SL!N. SOURCE

INPUT OUITPUT MEMODRY, TER

INPUT PIC, POEC. P016. PLEW. OLE%, DEST, SOEC. S14,ER S)JRC:

SJPRFS - .TRUE.
6?

03 5 1-1, PLEN
-

S SARRAYII) - -36
6

PLEr1G POTS - POEC
Q

SOT; *SLF'! - SOEC
r

SUI?2 (SOURCE + S016) - 1
4

DO 10 1-1, $DEC
0

S1J31 - SIJ9l 4 1
9

S3 SUM? + 1 I

IF(4ERC1RY(SU92) *E2. *01) TER 4 7 1

10 SARRAY(SUBI) a WERIRY(SUS?)
III

IWCER .NE. 0) 6130 10112
-

11 IF(SIS E2. 0 *OR. PL016 .EQ. 0) C0TO 16 1-4 '6

IF(S0IV .LT. PLOII.) 11H1 - $DIG 1 7 1-11

SUPI PL016 + I1
SU2 * SOURCE + 5016ii:
00 15 1-1, 1141 1

Still1 SUBI - I 1

SUR? SUIT? - 113

IF(qEI6ORYISU92) ECQ. 10) TER 6 11611

15 SARRAYCSUI1) a PIEMORY(SU32)
1.

TF(lER .Nr. 0) COTO0 101 Wi

16 SU31 - (SOURCE # SLE%) - 1 119

CALL U'PACK0RE6ORY(SUpI) ,X,2)
ASEG'4O a X(2) *EQ.s-11
SU31 - DEST12
SCOUNT - 0 123

00 100 31 fi LEN
126

SLIII a SUPl * 1 125

IF(SU31 .67. OLER 4 + EST) 6070 101 I?S 127

CHAR - PIC() 12F

IE(P1C(I) .[a. 9') SUPRES - FVALSE. 1?9 1!? C
IF(SARRAY(SCOU47 * 1) .4E. '0') SU'RES F .ALSE. 131 137

IECC4AR *RJE. e-) COTO0 23 1 1I-i

WEvORY(SURI - 1) a 06135
IE(NEC"4O) MEVORY(SUP1 - 1) a ''1

13?

IMl EC2. 1) 30 103 i'11"

SCDU4IT - SCOURT * 1 1 63

IF(.4OT. SUPRES) C0T0 09 141 142

lfIRqE90R?(SUBI - 2) .[2. *-') PEqRORY(SURI -2) a 1 * 163 11.'

6030 113z 165C

23 IFICHAR WEC. 041) 60T0 33 146 11.7

IF(NEGNO) 'EvORY(SUf1 - 1) a '- 160 14q

M0401'T. WEGRO) MEWORT(SUBI - 1) 0 0+1 ISO 151

ICC! *Ea. 1) 6010 100 152 153

SCOUR? v SCOJIT 4 1 V1

IF(.40T. SUPIES) 6010 99 155 156

IF(WEARORT(SU31 -2) f2I. 1#1) Pf"ORY(SULNI -) a s 157 15?

JCWvE'6OQ(SUS1 2) F3a. '-') 4E14ORT(SUUI 2) a*159 1S0

C0T0 100 161C

30 IF(CSEAR .ME. 06') C0TO 40 162 163
SEVORY(SUSI - 1) 10 '1' 16(

1 FEI F2. 1) 6O00 101)
165 16

SCiU~i a SCOUR?4T II.$
IFC.40Y. SUPRES) 6O30 99 16% 169

IE("EIRIRY(SU31 - 2) .FQ. '$') qECRORY(SUS1-)3 170 171

6) IFICRAR NEC. '0) S010 So 173 176

SCIUR? w SCOU14T + I1it
M'.R)T. S'JPRES) 60T0 Its17 17?

'E"ORYCSU41 - 1) U''1?!
COT1-0 C)1

53 MUC'AAR .41. 11Z) 6030 SS ISO 11

SC!UR a S 1111? 4 1 162

Figure 9 MOVEED Final Corrected Program Listing

63

IF(.i)T. SJPQES) 6To ;9 '

4 ~-E-DYY(Su31 - 1) 1; * 5
rnTo 1-131)

55 IF(CCAQ NF~. 90) SOTO 63 16 !t'

WCU4dT - SCCUWT +1 1 V3
'4!

9
OqV(SU31 1) *SAO~kY(SCIUM 19

S3 IF(CIAR *%F. 131) t0TO ?) 122 li3

" E1Y(S991 -) 1 8 1 91
rOT3 133) 195

'2 IF(C44P .4JF. I) GOTO 91 176 19?
vEw3RY(SU'1 - 1) 1/ 1~ '
SIT2 153 I 9)

-o If(ClAv .4fC. IV') 30Tl 11 2 70201
SJ1a Sudst - 1 2'?

13T3 113 2i3
.1 IF(CAAR Nf.* .') GDOc' S2 2'. 275

-E"3RYESUEl - 1) *.'206
G3Y3: 1'0 21?

t F(C44V .4E. ',I) S3TO 33 ?rq 239
XFC.'d2T. SIJPQFS) Iff"0PY(SUS1 - 1) 2 1.- z11
IF(SU39ES) -El~lRY(SUq1 - 1) *a 212 213
I)T'O 110 214

'1 5I4 * ?215
r-IT'2 1' 216
"S'flkvCStle1 - 1) - SARRAV(SCOU.1) 21?

1-1) e1NTI'Ijf 213

11 .TJk'J 219

Figure 9 cont.

0u4W ELIM1t4ATION PROFILE FOR MDVEED

',1TA41E TYPE TOTAL DEAD ..1vF lv

CONSTA~jT REPLACEmENT 151 145 976.72 3 0.3t 5 3.3'

SCALAP VAqIAQLF REFLACEOE 2430 ?t.13 ?7.32 3 0.3t 17 0.77
SCALAR FOP CONSTANT REP. 1121 1110 99.ex 1 0.3% 2 r.27

C04ST'AAJT FOR SCALAR REP. $74 692?;9.7w) 3).)% ? 3.3-

SOURCE CO~eSTRNT REOL4CEGIE 631 599 9.6 3 3.2x 2 3.1

ARRAY R'I. FOR Co%STA4JT R 470 470 131.0y 3 0.5Z 0 %"y'

AERAY REF. FOP SCALAR REP 1141 1331) ;1.91 3 3.'? 11 I'l-T

COPF ARA1LE ARRAY NAY! RE 149 10k 133.3%) 3'?% 3))3V

C04JSTS14T F3R ARRAY REF RE 135 05 133.3%) 3.3? 3 ~1
SCALAR FOP ARRAY PEF REP. 6P'. 1%9 09.4y 3 :).^X 4 .
AFRAY REF. FOR ARRAY REF. 251 246 ?'.32 3 3.5 2. 2'

UNIAPY OPERATOR INSERY104 325 316 ?7.8%. 3 3.)k 7 ?.?.

AP3TN'RET1C ODERATIR REPLA 21W 21? 130.3% 3 3
2
. 3 J.-,

RELAYI04AL OPERATOR REPLA 210 191 71.01 3 3.31 1? 9.314

LOGICAL C244ECTOR REPLACE 5 5 13~~ 3.ZK
LOSOLJTE VALUE INS!RT104 399 51 37.6% 3 3.31 24E f2.21

STATFVEKT 44ALYSIS S3 ?n~ i:lr.3T 3 3.3% 3 2.3,
STATEVENT rIFLET1ON. 56 st 10.2% 3 3.2K 3 U.'d2

RETUR4 STATEINFIT REPLACE4 1? 1? 12h .0 3 f).7% 3 C.

5010 STAT!EJT REPLACE"IEN 54! 636 9c.1% 3 3.31 12 1.?,

DO SIATE4tT END RFPLACER4 76 72 94..?% 3 0.3L 4 5.3y

*UTANT STATE FOR POVFED
FO KERIIENT "q3VEED "TIS is RUN 1s

VUYOER O9F TEST CASES a 65

IUIIAFR Of qUTANTS s 9341
N4U1YER OF DEAD 4UT44TS - 9503 (96.St)
NiU'PER OF LIVE WYUTANIS D 0.00)
vU'PER of EQUIV MUTAN~TS * 333 3.4T)

WURIER OF IOUTANIS WHICW DIED IV Hoot STANDARID WE[
t
IS 4539l

4NOR1ALIZED PUTANT RATIO ****Ot
SgtDYSEP OF 4UTATA3I STATEPENIS * 133
GIVINS A MUTANESISTA1ERMN RATIO OF 73.09

NU'.PER Of DATA REFERENCES a 272
OURP)ER of INISUE DATA REFERENCES * 34

ALL MUTANT TYPES MAVE BEENI ENASLED

Figure 10 MOVEED Status Information after Testing

64

IF (SDIG .GE. PLDIG) IHI=PLDIG

but, the next statement

IF (SDIG .LT. PLDIG) IHI=SDIG

will reassign the value of IHI to SDIG if SDIG is less than

PLDIG; it can be seen that the first conditional statement

can be changed to the assignment statement IHI=PLDIG because

it will be reassigned if the following conditional statement

is true.

Another redundant conditional statement is the

statement containing mutants 136 137 where the statement:

IF (I .EQ. 1 .AND. NEGNO) MEMORY(SUB1 - 1) =

does not need the compound conditional portion I .EQ. 1

because the next statement takes care of that portion of the

conditional. This is rewritten:

IF (NEGNO) MEMORY(SUB1 - 1) =

which allows the deletion of this statement later at loca-

tion 143 144.

As in the previous conditional statement, envolved with

the execution of a negative picture item, the same redundant

conditionals exist for the positive picture item.

The code for dealing with the Cobol floating dollar

sign can be compacted for the same reason the conditionals

can be rewritten in the code for the floating negative and

positive signs.

The rewritten MOVEED subroutine is shown in Figure 9

and the results of the mutation testing indicate that the

I

65

routine is now correct. Figure 10 contains the status in-

formation for the testing of subroutine MOVEED.

After becoming familiar with the FMS.2 system the test-

a ing sessions were easier to conduct. During the testing, an

error was detected in the FMS.2 system which involved COMMON

blocks where the data items had to be defined after the COM-

MON block statement which is oppositite of the way it should

be with the declarations before the COMMON block definition.

As an inexperienced user of the FMS.2 system, I had a few

suggestions for the format of some user instructions which

were mainly personal preferences that would not affect the

systems performance. I also gained some insight for user

interface for the CMS.1 system.

I found with testing that my programming style could be

changed in order to avoid redundant code and unnecessary

variables.

The results of the routines which were tested revealed

what was believed to be true. The routines MOVENM and

MOVENW proved to be correct and fully tested. The testing

of subroutine MOVEED was done because it was known that it

had not been fully tested and might contain some errors.

The testing revealed two errors and allowed for the complete

testing and generation of sufficient test data. The three

routines are now tested and presumably correct; as a result

of the testing, I have confidence that the routines perform

as they should.

S

66

CHAPTER IV

CONCLUSION

Mutation systems have been implemented for Fortran,

Lisp, and now for Cobol. Mutation analysis allows a

programmer to improve his test data through an interactive

process with a mutation system. Performing this iterative

process allows a user to become confident that his program

is correct.

CMS.I has been implemented and operational since the

Fall of 1979 with no reported problems. Several of the

major routines of CMS.I have been tested on the Fortran

mutation system, FMS.2, at Yale University which increases

the confidence in the Cobol system as a useful operationai

system for program testing of Cobol.

CMS.I has been limited to a certain Cobol subset whicL

should be expanded to support a wider range of typical Cobol

programs. These expansions should include Cobol subroutine

calls, search capabilities, and report generation. The

system was designed with portability as a major considera-

tion and also with expandability of the system in mind. A

discussion of system routines and machine dependencies is

given in Appendix B.

A current limitation in CMS.I is the I/O because the

--- -----.tI.....

67

input and output must be in buffered core arrays; this

problem could be eliminated by redesigning the I/O handling

routines to use disk direct access. This will cause some

consideration of 'What is meant by correctness of output

with direct access files'. Will it be required that records

must be read and written in the same order as they were in

the original program or should the final results be the same

as the original programs final results without caring in

what order the data was generated. If the requirement for

correctness is the final results must be identical, then the

mutant programs will have to run to completion before a com-

parison of the output can be made; this will slow down

processing.

There are some Cobol data types which are not currently

implemented in CMS.1. These data types include condition

names, alphabetic type, edited alphanumeric, computational

type, and index type.

It has been suggested that mutation systems might be

more efficient if they could mutate compiled code instead of

interpreting code. This enhancement would require the

capability to decipher compiled code to determine a

statements operation and the capability to alter this code.

Mutating compiled code would allow for easier implementation

of subroutine calls and the necessity for a SYMBOL TABLE

would not be necessary. The mutation of compiled code would

increase the efficiency and testing time of programs.

68

BIBLIOGRAPHY

[A] Allen T. Acree, CMS.1 Users Guide, July 1, 1979.

[AA] Allen T. Acree, Phd. thesis to be published
Spring quarter 1980.

[ABDLS] Allen T. Acree, Timothy A. Budd, Richard A. DeMillo,
Richard J. Lipton, Frederick G. Sayword, "Mutation
Analysis".

[BDLS] T. Budd, R. A. DeMillo, R. J. Lipton, and F. G.
Sayword, "The Design of a Prototype Mutation System
for Program Testing," Proc. 1978 NCC, AFIPS
Conference Record, pp. 623-627.

[Burl J. Burns, "The Stability of Test Data from Program
Mutation Digest for the Workshop on Software Testing
and Test Documentaion, Fort Lauderdale, Fla., 1978,
pp. 324-334.

[Budd] Tim Budd, The Generation of Test Cases for Mutation
Analysis Internal Mutation Group Memo.

[DLP] Richard A. Demillo, Richard J. Lipton, and Alan J.
Perlis, Social Processes and Proofs of Theorems
and Programs, Communicataions of the ACM, May 1079.
Volume 22, Number 5.

[DLSl] R. A. DeMillo, R. J. Lipton and F. G. Sayward, "Hints

on Test Data Selection: Help for the Practicing
Programmer," Computer, April, 1978, pp. 34-41.

[DLS2] R. A. DeMillo, R. J. Lipton and F. G. Sayward,
Program Mutation: A New Approach to Program
Testing," INFOTECH State of the Art Report on
Software Testing, Vol. 2, INFOTECH/SRA, 1979,
pp. 107-127.

IS] Donald A. Sordillo, The Programmer's Ansi Cobol
Reference Manual, Prentice Hall Inc., 1978.

